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Abstract— Dynamic legged locomotion is being explored as
a means to maneuver on rugged and unstructured terrains.
However, limited foot contact sensing capabilities often prohibit
bipedal robots from being deployed on complex terrains.
Locomotion over cluttered outdoor environments requires the
contacting foot to be aware of terrain geometries, stiffness, and
granular media properties. To achieve this, we designed a new
soft contact pad integrated with a variety of embedded sensors,
including tactile, acoustic, capacitive, and temperature sensors,
as well as an accelerometer. In addition, we devised a terrain
classification algorithm based on features extracted from those
sensors and various real-world terrains. The classifier uses these
features as inputs and classifies various terrains via Random
Forests and a memory function. Our cross-validation tests
demonstrate that the proposed classification algorithm achieves
an accuracy of about 96.5%, manifesting the applicability of this
foot sensing device to bipedal locomotion over diverse terrains.

I. INTRODUCTION

Legged robots are able to traverse diverse, complex, and
unstructured terrain, which is often required to execute
hazardous or burdensome tasks in the field. However, state-
of-the-art control methods for dynamic locomotion primarily
focus on a single terrain – for instance, level concrete – with
a few exceptions that include soft terrain locomotion [1], [2],
[3]. In that regard, the development of a unified locomotion
control strategy capable of adroitly traversing a wide variety
of unstructured terrains has yet to be explored, let alone
a controller for coping with emergency situations such as
foot slipping and sinking. One cause of this is the lack of
rich contact sensing information to capture terrain features,
including contact patch area, friction properties, stiffness,
and terrain moisture. Information-rich, robust, and compliant
contact foot sensing is necessary to design contact-aware
planning and control strategies for dynamic locomotion over
austere terrains.

Dynamic locomotion over austere terrains is gaining in-
creasing attention in the field of field robotics and animal
locomotion [4]. The work of [5] provided a stability crite-
rion to allow model-based control methods to function on
homogeneous, deformable granular terrain. The study of [6]
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Fig. 1. Our work focuses on the development of a soft, sensor-embedded
foot for legged robots. Signals from haptic, acoustic, capacitive sensors and
an accelerometer are used for terrain classification.

presented a model for granular terrain with an approach
to motion planning for maneuvering in such terrain. In
addition, the authors in [7] introduce a method to estimate
the ground normal force for mitigating the risk of slippage,
which is more likely on deformable terrain. Rebula et. al.
[8] developed a controller for a quadruped robot walking
on known rough terrain that could react to unmodeled foot
slippage and impassable terrain. Grizzle et. al. have achieved
bipedal robot walking with a Cassie robot on a set of
terrains that includes sand, snow, and grass [2]. However,
this remarkable mobility primarily relies on the robustness
of low-level joint controllers, without explicitly incorporating
terrain information into planning and control strategies. In
general, there is still a long way to go towards enabling
legged robots to walk robustly and elegantly over a variety of
rough terrains. To take one step towards this goal, this study
proposes to design a rich contact sensing pad embedded
with various sensors and accurate classification algorithms
for rough terrain identification, which is still missing for a
majority of current bipedal robots.

In contrast to robots, humans use multiple sources of
sensory input to identify terrain, including tactile, auditory,
and visual feedback. To mimic this and allow legged robots
to identify terrain, we design a multi-sensory system on the
soft sole of a Cassie-style foot, with the eventual goal of
installation on a Cassie robot. Features extracted from the
data are input into a novel terrain classification algorithm,



which consists of an implementation of Random Forests
with a memory function. Fig.1 depicts the integration of our
sensing foot into the Cassie robot.

To the best of the authors’ knowledge, this study takes
the first step towards integrating an array of different ter-
rain sensors for accurate terrain classification and frictional
contact estimation. This line of research paves the way for
future creation of terrain-aware locomotion planning and
control. The contribution of this study is three-fold: (i) A soft
contact sensor pad for a Cassie bipedal robot with a compact
and sophisticated contact sensing system; (ii) A terrain
classification algorithm achieving high-accuracy classifica-
tion performance for ten types of real-world terrains; (iii)
Experimental evaluations and performance benchmarking of
diverse terrain sensing tests and robustness to sensor failures.

II. RELATED WORK

Terrain classification is significant for wheeled and
legged robot locomotion over complex terrain. Although
numerous existing works employ vision methods via on-
board cameras and run surface texture recognition algo-
rithms [9], classification methods based on up-to-date sens-
ing sources attract increasing attention in the field [1], [10]. A
novel approach uses data from acoustic sensors mounted on
the robot, operating immune to lighting conditions or visual
obfuscation, which often causes failures of vision methods.
Libby and Stentz [11] solely relied on acoustic data while
Christie and Kottege [3] added a noise removal method to
filter out servo noise. Another method proposed by Giguere
et. al. made use of a tactile probe dragged along the ground,
using only accelerometer data to classify between ten types
of terrains [12], [13]. Others have used contact wrench data
from a 6-axis load cell to classify terrain [14], or alternatively
sensed the distribution of contact forces with a sensor array
[15], [16]. Although simple sensing solutions likely have
better computational efficiency and achieve moderate accu-
racy, high-resolution and accurate terrain sensors for diverse
terrains have not yet emerged.

Integrating multifarious sensors generally yields more
capable terrain classification, with the most common
sensor combinations consisting of proprioceptive sensors
that already exist on most robots. These typically include
inertial measurement units (IMUs), joint encoders, and motor
current sensors. Kolvenbach et al. [17] used a force/torque
sensor and IMU to gather impact data and classified nine dif-
ferent variations of Martian soil with 98% accuracy. Giguere
et al. [18] performed experiments with an amphibious RHex
robot and achieved 90% accuracy in identifying six different
terrains using via an IMU, motor position and current.
Similarly, [19] only used IMU data and motor state for a
millirobotic crawler. Degrave et al [20] did the same for
the Puppy II robot, but added tactile sensors to each foot.
Walas used vision, depth, and tactile sensors to achieve an
accuracy of 94% over twelve types of terrains [1]. Halatci et
al [21] also combined vision and tactile data to differentiate
between Martian rock, sand, and mixed rock and sand.
Compared to the methods above, our sensor pad focuses

on integrating multi-source sensing information, including
auditory and haptic signals. In particular, our study is one of
the first to integrate auditory and tactile signals and employ
memory functions in a terrain classification algorithm.

A variety of classification and learning methods, pri-
marily supervised ones, have been employed for terrain
classification. The most popular approach is to train a
Support Vector Machine (SVM) to discriminate between
different terrain types [9], [11], [3], [15], [19], [1] and
more. Degrave et. al. [20] experimented with different learn-
ing methods, including unsupervised methods, and found
that only linear regression performed poorly (due to non-
linearities) and reservoir computing was best. [12], [13],
studies using only one sensor, were able to achieve a high
accuracy by training a simple artificial neural network.

Our work integrates five types of sensors, as shown in Fig.
2. To the best of the authors’ knowledge, this sensing system
will offer a legged robot richer terrain-sensing capabilities
than any previous approaches. Additionally, we believe no
previous approach has incorporated the use of an acoustic
sensor together with many other sensors for terrain classi-
fication. It is worthwhile to mention that, unlike the fields
of computer vision or natural language processing, there are
no open-source datasets to benchmark terrain classification
algorithms, so performance comparisons among different ap-
proaches are not our objective. Instead, we will demonstrate
that the proposed sensor pad offers a high accuracy of terrain
classification and robustness to sensor failures.

III. DESIGN OF CONTACT SENSING PAD

Soft materials, which are mechanically deformable, are
often used in situations where their compliance adds to the
robustness, adaptability, and simplicity of a structure. In this
case, a stiff but deformable rubber (Smooth-Sil 960, Smooth-
On, Inc.) was used to hold five types of sensors in place on
the model foot: two TakkStrip2 pressure sensors, an acoustic
sensor, a capacitive sensor, a temperature sensor, and an
accelerometer. For practical inclusion on a Cassie robot, the
foot was built to match the standard Cassie foot’s shape, with
the sensors embedded in the rubber sole or attached to the
side of the foot. (See Fig. 2.)

The stiffness of the elastomer supported and dispersed
the heavy pressures experienced by the foot during testing,
protecting the embedded elements, while also naturally de-
forming to allow key sensors close access to the terrains’
surface. The elastomeric foot material was also used to tune
the pressure sensitivity of the TakkStrip2 pressure sensor:
varying the depth of the sensors within the foot affected
whether pressures were sensitive to local or dispersed forces.

The tactile sensors, TakkStrip2 (Righthand Robotics, Inc.),
are an array of six barometric pressure sensors (MPL115A2),
each encapsulated with an elastomeric pad to transduce
contact pressure into environmental pressure. The force
range of each subsensor is about 2N, but by encapsulating
the TakkStrip2 inside the rubber of the soft contact pad,
the contact forces are dispersed over a larger area and
the TakkStrip2’s force range is enlarged. The TakkStrip2s



Fig. 2. Exploded view of the sensor-embedded Cassie foot design.

were embedded at a depth that provided a force range of
approximately 10-250N. One TakkStrip2 was embedded in
the front of the foot, and one in the heel. A temperature
sensor (MCP9808, Microchip Technology, Inc.) was em-
bedded in the elastomer next to the heel TakkStrip2, with
its temperature-sensing element exposed. Wiring was routed
between the treads of the foot to allow even contact of
the sensorized sole with the terrain. While the current pad
prototype integrates all of aforementioned sensors, the front
tactile sensor and the temperature sensor are not used for
classification in this work. They will be used for compre-
hensive terrain sensing in the future work.

The capacitive and acoustic sensors (ADMP401, Analog
Devices, Inc.) were incorporated into the arched segment
of the sole, while an accelerometer (MMA8451, Adafruit
Industries LLC) was affixed to the rigid top of the foot.
The acoustic sensor was positioned in the arch of the
foot, facing downward to shield it from ambient noise. It
was protected from physical contact with the terrain by a
piece of conductive copper tape, 20mm ×55mm. This also
functioned as the major component of the capacitive sensing
circuit, with the copper tape attached to the VDD side of a
1.8MΩ resistor connected between 3.3V power and ground.
The VDD voltage was sourced from an I/O pin on a 32-
bit MSP432 microcontroller (Texas Instruments Inc.) and
repeatedly charged and discharged. The capacitance of the
copper tape changed with proximity to moisture and other
dielectrics, which affected discharge time as measured by a
NI-DAQ (National Instruments, Inc.).

The accelerometer, temperature, and tactile sensors are
connected to the MSP432 microcontroller via I2C com-
munication protocol. The maximum frequency at which all
sensors could be read sequentially was 38Hz. The acoustic
and capacitive sensors were measured via the analog input
ports of the NI-DAQ (National Instruments, Inc.) at 22kHz
(although the capacitor was charged via the MSP432).

The soft contact pad was cast in three sections from
SmoothSil 960 (Smooth-On, Inc.) colored black with Silc
Pig pigment (Smooth-On, Inc.). They were fastened to the
3D-printed PLA frame of the foot via wooden connectors
and glued together with Sil-Poxy (Smooth-On, Inc.).

TABLE I
NUMBER OF FEATURES FOR DIFFERENT SENSORS

sensor type number of features
tactile sensor 45

acoustic sensor 7
accelerometer 18

capacitive sensor 11
all 81

IV. TERRAIN CLASSIFICATION

This section describes our data processing procedure and
classification algorithms. Details on feature extraction are
elaborated based on various terrain sensing signals.

A. Signal processing for data acquisition

A multi-sensor continuous-time series was acquired from
the testbed described in the next section. A preprocessing
and segmentation process (Fig. 3) transformed each impact
into one data point.

1) Signal pre-processing: Raw data from the sensors are
noisy and require signal preprocessing to increase the signal-
noise ratio and preserve useful terrain information. Even
post-calibration, there is linear zero drift in the haptic signal
which can be removed with a detrending function. The
acoustic signal is preprocessed with a high-pass filter and
spectrum subtraction strategy to filter out ambient noise from
the Instron machine used in tests. Acceleration and capacitive
signals are put through zero alignment for post processing.

2) Time series segmentation: The continuous sensor sig-
nals are segmented into discrete periods, or data points, each
corresponding to the contact experienced during one step.
Each data point also includes about 0.5 sec of data from
the non-contacting period before and after each impact for
better classification. The segmentation is comprehensively
conducted on all sensor signals, making it viable even when
certain signals are information-poor. For example, if the
terrain is so uneven that initial contact does not produce
pressure over the embedded tactile sensor, it is difficult to
segment sensor signals using tactile sensor data due to lack
of information. Additionally, the acoustic signal – which is
heavily affected by environmental noise – only records useful
information during impact. By appropriately segmenting the
data, we can easily distinguish between noise and contact
information. The spectrum subtraction then reduces noise
during the contact period by subtracting out what was
recorded the remainder of the time.

B. Feature extraction

This subsection introduces the features that are extracted
from each sensor signal for classification. Although the
nearest neighbors with Dynamic Time Wrapping (DTW)
works well for many applications in time series classification
and [22] demonstrated that the DTW distance can be used as
a feature, this algorithm performs poorly in our experiments.
Due to different sampling frequencies among sensors and
variations in the segmenting process, each segment of time-
series data contains a different number of data points. To



Fig. 3. Signal processing for data acquisition. After collecting raw data for multiple foot impacts, signal pre-processing and segmentation are used to
convert it into a set of data points for feature extraction in Section IV-B. All sub-figures represent curves of signal value versus time.

maintain the same dimension for the classification algorithm,
we extracted 81 features in total to represent the signals,
as shown in Table. I and Fig. 4. Since the haptic sensors
and accelerometer have a 38Hz sampling frequency and
the acoustic and capacitive sensors have a 22kHz sampling
frequency, we handle the first two signals only in the time
domain while the other two in both time and frequency
domains. In total, there are 81 features described here.

1) Haptic signal: We use the force distribution of six-
point-array tactile signal and multiple statistical measure-
ments, where each point includes maximum value, minimum
value, the value when the sum value of the six points reaches
its peak, and the first to the fourth standardized moment of
each signal. We also use the maximum value and minimum
value of the sum value as well as define the time to reach
80% of its maximum value, a possible indication of the
terrain stiffness. There are in total 6 × 7 + 3 = 45 features.

2) Acoustic signal: In the time domain, the Zero-Crossing
Rate (ZCR), the rate of signal sign changes (i.e. zero-
crossing), is used as one feature. ZCR is a common feature
used in auditory classification and is demonstrated to be
effective in speech processing. A fixed number of Fast
Fourier Transform (FFT) is used to obtain the frequency
spectrum of each signal, ensuring frequency spectra of the
same dimension despite different lengths in the time domain.

Inspired by Mine’s work [23], we define the sum of
amplitudes in each frequency band as the spectral band
energy and use it as a feature. Specifically, the acoustic signal
frequency is between 4 kHz and 17 kHz after noise reduction.
We set 4096 Hz as one frequency band and each one has
an overlapping frequency of 2048 Hz with its neighbor
frequency band. Therefore, seven features (six spectral band
energies and one ZCR) are extracted as features.

3) Acceleration: For 3-axis linear acceleration, we use the
ZCR of the first-order derivative of the raw data of each axis
to represent the signal fluctuation frequency. Statistical mea-
surements including the maximum value, minimum value,

sum, mean, and variance for each axis acceleration are also
extracted as features (3 × 6 = 18 features in total).

4) Capacitive signal: We use the same frequency band
technique for the capacitive sensor as we did for the acoustic
sensor, but enlarge the whole frequency range to 0 Hz to 22
kHz. We extract multiple features in time domain, such as
mean and variance, and frequency domain, such as spectral
band energy (2 + 9 = 11 features in total).

C. Classification algorithm

This section describes the high-accuracy classification
algorithm developed for use on various terrain conditions.
We use Random Forests as our basic classifier and employ a
memory function to factor in the relationship between con-
secutive periods to improve the classification performance.

The classification procedure is to predict the terrain cate-
gory via a training data set with terrain labels. The Random
Forests (RFs) is a classification algorithm combining a mul-
titude of tree predictors, each of which depends on the values
of a randomly sampled vector. All the trees in the same forest
use the same distribution. Every tree casts a unit vote for
the final classification result [24]. The whole forest takes
the number of votes received by each class to represent the
predicted probability of that class and uses the class with the
maximum predicted probability as the final predicted class.
Additionally, the most important parameter of RFs is the
number of trees. Increasing this number increases accuracy
at the expense of efficiency. According to this, we set the
number of trees to be 100 in our experiment.

Although the continuous-time series is segmented into
multiple data points, certain relationships still exist among
them and are explored in our study to provide more infor-
mation to the classification algorithm. In practical scenarios,
a legged robot will likely take multiple steps on one terrain
before switching to another one. Therefore, it is reasonable
that the (k + 1)th step classification incorporates the kth

step result. Accordingly, a memory function f is designed.
We denote s as the final predicted probability and pk,i as the



Fig. 4. Diagram of 81 features extracted from sensor signal of every data point after signal processing such as FFT.

predicted probability of ith terrain output by Random Forests
at the kth period. Hence, we have sk+1,i = f(sk,i, pk,i).
For problem simplicity, we choose a linear combination
of member functions of sk,i and pk,i, i.e., f(sk,i, pk,i) =
f1(sk,i) + f2(pk,i). A performance comparison among vari-
ous memory functions is conducted in the next section.

V. EXPERIMENTAL RESULTS

A. Experiment setup

To produce a controlled environment for simulating the
stepping pattern of the Cassie robot, we conducted a cyclic
impact test on an Instron 5965 machine. In a single cycle, the
sensorized foot moves downward at 50mm/s to a peak force
of 250N, pauses for 0.5 sec, returns to the initial position
at 50mm/s, and then pauses for another 0.5 sec. Tests were
organized into 4 sets of 25 cycles on each of 10 different
terrains, with the terrain being shifted or perturbed between
sets to introduce natural variation. Five of these trials were
conducted per terrain, to provide both training and testing
data, for a total of 5000 data points across the 10 terrains.
The terrains were chosen to simulate both indoor and outdoor
terrain environments and included: a wood board (WB), foam
mat (FM), gravel (GR), rug (RU), metal plate (MP), concrete
block (CB), dry pine straw mulch (DM), wet pine straw
mulch (WM), dry poppy seeds (DP), and wet poppy seeds
(WP), as shown in Fig. 5. Terrains such as poppy seeds and
gravel were contained within a plastic box and manually
raked smooth between cycles. The test set-up is shown in
Fig. 6.

Next, terrain classification tests based on the collected data
set are conducted to demonstrate the performance of our
terrain classification algorithm.

B. Cross-validation test

Since data points within the same impact trial are highly
repeatable, running cross-validation directly on the whole
data set will result in an extremely high accuracy. There-
fore, we change the cross-validation test to a more difficult
scenario by treating one trial as a whole. The whole data set
with 200 trials is randomly divided into a training set with

all the data of 160 trials and a test set with the remaining
data. The resulting testing and training data sets are used to
train and evaluate the model. The whole process is called
one test process. In total, 100 test processes are run for
every classification algorithm. Next, we will compare the

Fig. 5. Terrain types studied in the classification

Fig. 6. Experimental test bed, consisting of an Instron-mounted foot, impact
cyclically onto various types of terrain. The cyclic foot motion simulates
the stepping process of our Cassie Robot.



TABLE II
ACCURACY OF VARIOUS CLASSIFICATION ALGORITHMS

classifiers average accuracy
KNN 85.7%
RFs 96.2%
NB 78.8%

SVM 87.5%
RFs+MF 96.5%

performance of various classification algorithms.
1) Accuracy comparison of various classification algo-

rithms: We propose a terrain classification algorithm based
on a combination of Random Forests and memory functions
(RFs+MF). We compare its accuracy to that of multiple
well-known algorithms including: (i) Naive Bayes (NB),
a classifier based on Bayes’ theorem; (ii) Support Vector
Machine (SVM), a common classifier using a hyper-plane for
classification; (iii) K-nearest neighbours algorithm (KNN), a
lazy method that finds k nearest data points in the training
set for classification; (iv) Random Forests (RFs), a classifier
based on multiple decision trees. We use the classifiers in the
Matlab toolbox to run tests for NB, KNN, and RFs and use
libsvm [25] for SVM. The KNN we use sets the number of
nearest data points to be 1, and the tree number of RFs to be
100, which shows the best performance for these classifiers.

The average accuracy of various classifiers are shown in
Table II, and the results indicate that our proposed RFs+MF
algorithm has the highest accuracy. The confusion matrix
(i.e., an error matrix showing the detailed classification
performance) for our classification algorithm is shown in Fig.
7. The accuracy for most of the terrains is high, while gravel
and dry pin straw mulch have a low accuracy since these
unstructured terrains have similar contact force distribution,
resulting in similar haptic signals. Meanwhile, there is a large
variation among data points of these two terrains, which also
increases the difficulty of classification. Additionally, the rug
terrain is prone to be misclassified due to the small sound
induced by rug impact, compared to the sound induced by
impact with the ground locating under the rug.

2) Accuracy comparison of various memory functions:
This subsection evaluates the performance of the proposed
classifiers which combine RFs with different memory func-
tions. In our case, the test point indices are designed as a
discrete-time sequence. We set memory functions f1 and f2
to have the same function structure and compare the results
of using linear, polynomial, and exponential functions, as
shown in Fig. 8.

According to the cross-validation test results, the Random
Forests can output a maximum predicted possibility to the
correct class (i.e., correct classification) for most test points,
while producing a fairly low correct predicted possibility
only at certain discrete test points that result in misclassi-
fication. In the case of unchanged terrain, using a memory
function enables the previous test points that have high
predictability to compensate for those misclassification-prone
points (see Fig. 8). This capability is enabled by increasing
the predicted possibility of their correct classes. Therefore,

the average classification accuracy increases. The exponential
one performs best among all the function structures because
the weight of high predicted possibility is enlarged automat-
ically. This exponential one used as the memory function is
set to sk+1,i = e3sk,i + e8pk+1,i . However, when the terrain
changes, the inclusion of a memory function will reduce the
predicted possibility for the correct class because previous
test points provide a different terrain type than the current
one. As a result, when the terrain changes more frequently,
the accuracy of the algorithm combined with the memory
function will decrease. We compare the performance of the
classification algorithm under the following conditions: (i)
with Random Forests only, and (ii) with RFs and a memory
function under the different frequencies of terrain variations.
The result in Fig. 9 shows when the terrain type varies less
than 340 times every 1000 test points (i.e., around 3 steps
per terrain), the addition of a memory function is beneficial.

3) Accuracy comparison of various sensor combinations:
In this study, we demonstrate that using all sensor features
renders a higher accuracy for all the ten terrains than that
of the model using features of an individual or a subset
of sensors. In real-world scenarios, sensor failure or break-
age occurs frequently, especially when deployed on rugged
terrain. By running tests for various sensor combinations,
we observe that the accuracy declines but still remains over
93% (see Table III). This shows the robustness to sensor
failures. Namely, if one sensor breaks, we can still use the
remaining sensors with a model trained on the remaining
sensor combination and obtain an accurate result.

4) Robustness evaluation: Sensors for terrain classifica-
tion are prone to break due to intermittent impact with the
ground. Although we can design a mechanism to switch the
trained model when certain sensors are broken, it is often
challenging to detect whether a sensor malfunctions. It is
important to evaluate the robustness of the proposed terrain
classification model when certain sensors work abnormally.
To evaluate this, we manually generate a set of corrupted
test points by replacing parts of the sensor signals with noise

Fig. 7. Results of our classification algorithm based on multi-sensor signals.
The number in each cell represents the percentage of prediction for each
case and the diagonal number shows the correctly predicted cases.



TABLE III
COMPARISON OF CLASSIFICATION ACCURACY OF VARIOUS SENSOR COMBINATIONS

sensors
classification accuracy (%) terrain type

WB FM GR RU MP CB DM WM DP WP Average

tactile sensor 94.5 98.7 82.8 81.6 99.0 98.8 46.6 76.7 97.2 100 87.6
acoustic sensor 88.5 71.0 78.7 62.9 79.9 96.6 70.0 91.4 88.8 96.1 82.4
accelerometer 79.3 81.7 92.8 76.7 95.2 99.4 88.6 99.0 96.9 99.9 91.0

capacitive sensor 82.2 73.7 70.2 76.8 88.8 90.3 47.0 93.2 99.4 99.3 82.1
tactile + acoustic + accelerometer sensors 95.5 99.0 90.3 83.6 99.9 99.8 89.1 97.5 99.0 100.0 95.4

tactile + acoustic + capacitive sensors 95.5 99.5 83.4 84.2 99.8 99.8 84.9 93.7 97.8 100.0 93.8
tactile + accelerometer + capacitive sensors 95.3 99.3 87.6 88.6 99.9 99.8 93.2 99.0 99.9 99.9 96.3

acoustic + accelerometer + capacitive sensors 93.1 93.1 96.7 80.7 99.0 98.8 93.7 99.8 96.7 100.0 95.2
all sensors 95.8 99.1 91.5 86.7 100.0 99.8 93.4 99.0 100.0 100.0 96.5

Fig. 8. Comparison of the predicted possibility of correct class among
different memory functions.

signals to simulate the abnormal working condition. Gaussian
white noise, zero signal, or a combination of the two are
used as three types of noise in our work. These corrupted
test points are combined with original test points to compose
the whole test data set. Fig. 10 demonstrates a high accuracy
of our model when tested with various ratios of normal and
corrupted data points. The results show the robustness of our
model: even when all the data points are corrupted (i.e., the
ratio is 0), the classification accuracy is still around 83%.
The accuracy increases as the ratio increases as expected.

5) Discussion: The cross-validation experiment shows
our classification algorithm is accurate when dealing with
multi-sensor data. The average accuracy is about 96.5%. In
addition, we have employed Principal Component Analysis
(PCA) to extract the significant feature dimension and the
dimension can be reduced to 18 with an accuracy over 94%,

Fig. 9. Comparison of average accuracy between the Random Forests
algorithm with and without a memory function about the number of terrain
variation.

indicating the potential of our algorithm for faster and real-
time deployment. Furthermore, the classification shows an
extremely high accuracy as above 98.5% on six types of
terrains, while the results of other terrains are also fairly
high. Even for the worst identification – the rug terrain, the
accuracy is still above 86%.

C. Initial tests under unpredictable impact conditions

To take an initial step towards deploying our sensor pad
and classification algorithm for real-world terrain, we explore
methods to randomize our data points further and remove
the predictability of the Instron machine. In a series of high-
variance tests, we remove the integrated foot from the Instron
machine and strike the terrain manually. The terrain is struck
at different locations for each data point, and the foot is held
down for approximately half a second. However, the force of
the impact, no longer being set by the Instron, is determined
by each experimenter and renders large variations. Additional
unpredictability comes in the form of contact angle, speed,
and impact duration. In total, 1700 data points of all terrains
are collected. We select 1400 points randomly as the training
data set and the remaining 300 points as one test data set.
By executing 100 test processes, the average classification
accuracy of our algorithm is about 89%. Although it is lower
than the 96.5% accuracy in the Instron test, the result still
validates the real-world deployment capability of our sensor
pad and classification algorithms.

Fig. 10. Average accuracy of our classification algorithm with the mix of
different proportions of normal test points and corrupted test points that use
different types of signals as the invalid signal.



VI. CONCLUSIONS AND FUTURE WORK

This study presents a novel soft contact pad with five
types of embedded sensors (two tactile, one acoustic, one
capacitive one temperature, and one accelerometer) and a
high-accuracy terrain classification algorithm, which opens
the opportunity for our Cassie robot to identify the terrain
and design terrain-aware planning and control. The elas-
tomeric pad encapsulates and protects the sensors, and also
serves to tune the force range of the tactile sensor through
spatial force distribution. The sensorized foot was attached
to an Instron and put through cyclic impact motions to model
the stepping behavior of the Cassie robot. The impact data
was put through a feature-based classification algorithm that
combines Random Forests with designed memory function.
The result of cross-validation shows the algorithm has a
high classification accuracy as 96.5%. Furthermore, differ-
ent comparisons are conducted, showing the redundancy of
integrated sensors and the robustness of our trained model.

We are extensively evaluating various real-world terrains
under harsh conditions, in particular, improving our current
classification algorithms to handle terrains composed of a
mixture of two or three types of granular media considered
in this study. Also, when a sensor failure occurs, a switching
mechanism of classification algorithms is essential to accom-
modate this emergency situation.

Meanwhile, we will extract and represent patch contact
forces from the tactile sensor. Accordingly, both classified
terrain information and contact forces will be encoded as
symbolic representations and incorporated into the Cassie
locomotion planning and control optimization algorithms.
The long-term goal is to enable Cassie for real-time terrain-
aware maneuvering over highly rough terrain.
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