
Hierarchical Reinforcement Learning and Value Optimization for

Challenging Quadruped Locomotion

Jeremiah Coholich1, Muhammad Ali Murtaza1, Seth Hutchinson1, and Zsolt Kira1

Abstract—We propose a novel hierarchical reinforcement
learning framework for quadruped locomotion over challenging
terrain. Our approach incorporates a two-layer hierarchy in
which a high-level policy (HLP) selects optimal goals for a
low-level policy (LLP). The LLP is trained using an on-policy
actor-critic RL algorithm and is given footstep placements as
goals. We propose an HLP that does not require any additional
training or environment samples and instead operates via an
online optimization process over the learned value function of
the LLP. We demonstrate the benefits of this framework by
comparing it with an end-to-end reinforcement learning (RL)
approach. We observe improvements in its ability to achieve
higher rewards with fewer collisions across an array of different
terrains, including terrains more difficult than any encountered
during training.

Index Terms—Robotics, Reinforcement Learning, Optimiza-
tion

I. INTRODUCTION

In recent years, there has been an explosion of interest in
using reinforcement learning (RL) for robotic planning and
control. It is possible to learn robot legged locomotion poli-
cies from scratch in an end-to-end manner [1]–[6]; however,
this is typically challenging and requires extensive reward
function engineering, hyperparameter tuning, or environment
engineering. While RL promises to be a general framework
for robots to autonomously acquire a wide variety of skills,
legged locomotion poses a difficult learning and control
problem due to underactuation and high-dimensional state
and action spaces.

To avoid these issues and increase the success rate of
learning locomotion policies, researchers began to incorpo-
rate various priors into RL algorithms. Most notably, [7]
proposes a gait trajectory generator (TG) and limits the RL
policy to learning residuals which are added to the TG output.
This approach was adopted by others in order to improve
development time, sample efficiency, and the success rate of
learning locomotion policies [8]–[11]. We use a similar style
of trajectory generator in our proposed approach and in our
”end-to-end” reinforcement learning baseline.

Other forms of prior knowledge are feasible as well.
Polices can be learned by imitating quadruped animals [12].
However, collecting high-quality animal data is difficult to
scale because it requires bringing animals into a motion
capture lab. Additionally, there exists a significant mor-
phology gap between quadruped animals and state-of-the-art

1Institute of Robotics and Intelligent Machine, Georgia Institute of
Technology, Atlanta, GA, USA. Emails: {jcoholich, mamurtaza, seth,
zkira}@gatech.edu.

Fig. 1. The policy architecture incorporating a high-level policy which
makes use of the low-level policy’s value function for selecting high-value
footstep targets

quadruped robots, which do not have ankles for example.
Other approaches combine a residual RL-policy with online
trajectory optimization and whole-body control [13], [14].
DeepGait constrains learning with model-based feasibility
criteria, bypassing the physics simulator [15]. In contrast to
all of these approaches, our proposed method only relies on
an open-loop TG and otherwise learns locomotion directly
from interactions with the physics simulator.

Hierarchical RL methods have also been developed for
other legged embodiments. In ALLSTEPS, the authors train
bipedal robots in simulation to walk on increasingly difficult
stepping-stone sequences [16]. However, their foot placement
sequence is fixed and cannot be optimized when many
stepping stones are present. Li et al. proposed a hierarchi-
cal RL method for hexapods in which a high-level policy
performs MPC-style rollouts over a set of learned low-level
primitives [17]. This requires learning dynamics models for
each primitive. In our approach, the high-level policy requires
no extra learning once the low-level policy is trained.

In this work, we learn policies that find optimal foot
placements on terrain with gaps and height variation. In
this domain, legged robots clearly trump wheeled robots,
since legged robots require only small, discrete contacts with
terrain. Planning these contacts, or footstep placements, is
therefore crucial in unlocking the full capability of legged
robots. We posit that biasing our policy architecture to

focus on footstep placements will improve our ability to
traverse such challenging terrain. In addition, the use of a
hierarchical framework provides a modular structure, which
accommodates the swapping of components.

Our method involves a two-layer hierarchy, where footstep
target locations are passed from the high-level policy (HLP)
to the low-level policy (LLP). In this setup, we first train
the LLP to control a simulated quadruped robot to hit a
sequence of randomly generated footstep targets. The HLP
then finds optimal footstep locations by leveraging the value
function obtained during the training of the LLP. Other works
contain similar online optimization approaches. QT-Opt is a
technique for online optimization over a learned Q-function
using the derivative free cross-entropy method [18]. Our
work includes the addition of a hierarchy and an optimization
term which makes our architecture more flexible. We use
a combination of derivative-free and derivative-based opti-
mization methods. [19] uses a similar hierarchical approach
leveraging a low-level policy’s value function, but focuses
on the offline RL setting where distribution shift from the
offline training data is a significant concern.

We can summarize the main contributions of this paper as
follows:

• A hierarchical learning-based quadruped control ar-
chitecture in which the high-level footstep policy is
obtained without requiring additional training.

• An online value-optimization process for selecting low-
level policy goals, obtained without additional environ-
ment samples beyond low-level policy training.

• Validation of the capability of the proposed method-
ology to generalize beyond its training environment,
compared with an end-to-end RL policy on the task of
quadruped locomotion over rough terrain

The rest of the paper is organized as follows: Section II
gives RL preliminaries and discusses LLP training. Section
III outlines the HLP and its associated action space and
objective function. Experiments and results are presented
in Section IV, and future work and conclusions are given
in section V. Video results and code are available at:
www.jeremiahcoholich.com/publication/hrl optim/.

II. LOW-LEVEL POLICY TRAINING

The low-level policy (LLP) is goal-conditioned and out-
puts actions directly to the robot. Our method leverages the
LLP’s value function, which gives the expected cumulative
reward for a given state, goal, and policy. As a result,
an actor-critic RL algorithm must be used. In theory, the
algorithm can either be on-policy or off-policy.

We train the LLP to hit a randomized sequence of proce-
durally generated footstep targets. Both the actor and critic
networks take the same input consisting of goal footstep
target locations and robot observations.

A. RL Preliminaries
We formulate the task of hitting footstep targets as a

partially-observable Markov decision process, which is a

tuple (S,O, A, p, r, ρ0, γ). Here, S is the set of environment
states, O is the set of observations, A is the set of policy
actions, p : S × A → S is the transition function of the
environment, r : S × A × S → R is the reward function,
ρ0 is the distribution of initial states, and γ is a discount
factor. Our goal is to find an optimal policy π∗ : S → A that
maximizes the discounted sum of future rewards J(π) over
time horizon H .

J(π) = E{si,ai}H
0 ∼π, ρ0

[
H∑
t=0

γtr (st,at, st+1)

]
(1)

π∗ = argmax
π

J(π) (2)

We use the proximal policy optimization (PPO) [20], an
on-policy actor-critic method, to solve for π∗ with λ = 0.99.
Additionally, we train a value network to predict the value of
a state given the current policy. The value network is trained
with the mean-squared error loss and generalized advantage
estimation (GAE) [21] to stabilize training.

Vπ (s0) := Eπ, p

[
H∑
t=0

γtr (st,at, st+1)

]
(3)

at ∼ π(· | st), st+1 ∼ p(· | st,at)

The policy and value networks are parameterized as sep-
arate multilayer perceptrons with two hidden layers of size
128.

B. Action Space

We use the Policies Modulating Trajectory Generators
(PMTG) architecture [7] with the foot trajectories given in
[8]. Our 15-dimensional action space consists of trajectory
generator frequency, step length, standing height, and 12
residuals corresponding to the 3D position of each foot.
The trajectory generator outputs foot positions in the hip-
centered frame (as defined in [8]). These are converted into
joint positions with analytical inverse kinematics and tracked
with PD control. The trajectory generator cycle is synced to
a phase variable ϕt ∈ [0, 2π), where S := [0.25π, 0.75π] ∪
[1.25π, 1.75π] represents the swing phase of each leg and
[0, 2π)/S is the support phase.

We design the TG to output a trotting gait, which means
two feet have targets at any given time. N are the pair
of feet that the robot has active targets at time t with
N ∈ {{1, 4}, {2, 3}}. The foot indices in numerical order
correspond to the front-left, front-right, rear-left, and rear-
right feet.

C. Observation Space

The policy observation is a vector Ot = {x, ẋ, τ, O,
c, p, f , cosϕ, sinϕ, at−1, at−2, F} where x ∈ R12

represents the foot positions in the hip-frame, τ ∈ R12

is the joint torques, O ∈ R4 is the IMU data con-
sisting of {θroll, θpitch, θ̇roll, θ̇pitch}, c ∈ {0, 1} ⊂ R4 is

a vector giving the contact state of each foot, p =
{p1,x, p1,y, p2,x, p2,y, p3,x, p3,y, p4,x, p4,y} ∈ R8 gives the x
and y distances from each foot to the next (for i ∈ N)
or previous (i /∈ N) footstep targets, f ∈ {0, 1} ⊂ R4 is a
multi-hot encoding of N , ϕ ∈ R is the phase of the trajectory
generator, at−1 and at−2 give the previous two actions taken
by the policy, and F is a scan of points around each foot.

D. Reward Function

The reward function for the LLP encourages hitting foot-
step targets and contains additional terms to encourage a
reasonable gait. The reward function terms are as follows:

1) Footstep Target Reward: Equation 4 defines this reward
term, where hi,t ∈ {0, 1} indicates whether or not foot i has
hit its footstep target at time t. A target is considered hit if
the foot makes contact with at least 5 N of force in a 7.5 cm
radius around the target while the trajectory generator is in
the contact phase for that foot. We define di,t as the distance
in the xy plane from the foot center to the target center. If the
robot hits both active footstep targets at once, the reward for
each foot is added, the total is tripled, and the environment
advances to the next pair of targets. This reward function is
inspired from [16] and is given by

κFT

[
2

∏
i∈N

hi,t + 1

]∑
i∈N

hi,t

[
1 + 0.5

(
1− di,t

dhit

)]
(4)

where κFT is the weighting term for the reward function
and dhit is the xy distance threshold for hitting a footstep
target (set to 7.5 cm). The factor

(
2.0

∏
i∈Nhi,t + 1

)
triples

the per-foot rewards if both footstep targets are achieved on
the same timestep.

2) Velocity Towards Target: To provide denser rewards
that encourage hitting footstep targets, we reward foot ve-
locity towards targets.

κV T

∑
i∈N

ḋi,t (5)

3) Smoothness Reward: To ensure a smooth robot motion,
we added a penalizing term to the norm of second-order finite
differences of the actions, where at is the action at timestep
t.

κS∥at − 2at−1 + at−2∥2 (6)

4) Foot Slip Penalty: This term penalizes xy translation
greater than 2 cm for feet that are in contact. ci,t gives the
vertical contact force for foot i at time t in Newtons. xi,t ∈
R2 is the position in meters on the x-y plane for foot i at
time t.

−κSL

∣∣∣∣∣∣
i

∣∣∣∣∣∣
1≤i≤4

∥xi,t−xi,t−1∥2>0.02

ci,t>0

ci,t−1>0

∣∣∣∣∣∣ (7)

5) Foot Stay Reward: A trotting gait requires two feet to
have active footstep targets at any time. To prevent the robot
from immediately moving its feet off of footstep targets after

Fig. 2. A visualization of the high-level policy optimization approach on a
2D slice of the value function goal-space

they are hit, we reward the agent for keeping its feet on
previous targets.

κFS

∑
i∈{1,2,3,4}\N

hi,t

[
1 +

1

2

(
1− di,t

dhit

)]
(8)

6) Collision Penalty: We add a penalty if any robot link-
age collides with another linkage or with terrain, excluding
the case of robot feet colliding with terrain. The penalty is
given by Equation 9, where g is the number collisions.

−κCg (9)

7) Trajectory Generator Swing Phase Reward: This term
rewards the trajectory generator for entering the swing phase
ϕt, weighted by the frequency of the trajectory generator
(fPMTG). This term prevents the RL algorithm from learning a
degenerate policy that remains at the same place and collects
maximum rewards for foot stay, foot slip, and smoothness.
This reward is given by Equation 10, where 1{·} is the
indicator function.

1S{ϕt} fPMTG (10)

III. HIGH-LEVEL POLICY

The purpose of the HLP is to choose a goal, or footsteps
target, for the LLP. No additional samples from the environ-
ment or neural network parameter updates are required for
the HLP once the LLP is fully trained. The HLP makes use
of the LLP value function, which is typically discarded after
RL training.

First, we describe the action space of the HLP and its
objective function. Then, we discuss the online optimization
process used to find optimal actions for the LLP.

A. Action Space

The HLP action space is a continuous eight-dimensional
space that encodes the x and y relative positions of the next
footstep targets for all four feet of the quadruped, which is
the vector p defined in Section II-C.

AHLP := p ⊂ O

In addition to the current observation ot, the HLP also
receives the robot’s yaw angle, θyaw. This necessary to define
a direction for travel.

B. Objective Function

The objective function of the HLP includes the expected
discounted rewards of the LLP, which is estimated by the
LLP value function, plus an auxiliary objective H. The
auxiliary objective is necessary since simply choosing the
highest-value footstep targets will yield solutions where the
robot steps in place. H is designed to encourage locomotion
in a particular direction and is parameterized by a heading
angle α and a weight κHD. The robot yaw θyaw is used to
map the targets in robot frame to the world frame.

H =
[
cosα sinα

]
Rz(θyaw)

[
pa,x pb,x
pa,y pb,y

] [
1
1

]
(11)

The directional term is given by Equation 11 where Rz(θyaw)
is a 2D rotation matrix. The objective function for the HLP
at time t is given by Equation 12. We would like to solve
the optimization problem given in Equation 13.

RHLP := V (st) + κHDH (12)

p∗ = argmax
p

RHLP (13)

The hyperparameter κHD controls the tradeoff between
picking targets that maximize the expected success of the
LLP with picking targets that advance the robot’s movement
in direction α.

C. Optimization

There are multiple options for solving equation 13, in-
cluding gradient-based optimization methods, since both the
value function and H are differentiable with respect to P.
Leveraging the low-dimensionality of P, we solve Equation
13 with grid-search initialized gradient ascent, the approach
shown in Figure 2. We first discretize the 8-dimensional
space of dnext into a box [−B,B]8 with R points per axis
and query the objective function at each point. The optimum
point of the grid search is used as the initialization for
gradient ascent. The full algorithm is given in Algorithm 1.
In our experiments, we set η = 10−4, R = 5, B = 15cm,
and N = 5. These values were chosen to minimize runtime
compute requirements without reducing the search space too
much and sacrificing performance. We set α from Equation
11 to zero degrees, which corresponds to forward motion.

Algorithm 1 Grid Search Initialized Gradient Ascent for
HLP Optimization

1: Input: Low-level policy value function V (st), direc-
tional objective H , grid search bounds B, grid resolution
R, learning rate η, number of gradient ascent iterations
N

2: Output: Optimal footstep targets p∗

3: pbest ← 0 ▷ Initialize the best footstep target
4: Rbest ← −∞ ▷ Initialize best reward
5: Pgrid ← GenerateGrid(B,R) ▷ Generate grid points

within bounds
6: ▷ Grid Search Step
7: for p ∈ Pgrid do
8: R← V (st) + κHDH(p) ▷ Evaluate HLP objective

for each p
9: if R > Rbest then

10: pbest ← p
11: Rbest ← R
12: end if
13: end for
14: ▷ Gradient Ascent Step
15: p← pbest ▷ Initialize p with the best grid search result
16: for i = 1 to N do
17: ∇R(p)← ∇p[V (st) + κHDH(p)] ▷ Compute

gradient of HLP objective
18: p← p+ η · ∇R(p) ▷ Update footstep targets using

gradient ascent
19: end for
20: return p

We present a lemma to lower-bound the error of grid
search initialized gradient ascent.

Lemma III.1. The expected initial error for grid search
initialized gradient ascent is smaller than or equal to the
expected initial error for random initialized gradient ascent
i.e

f(x∗)− f(xbest) ≤ Ex0∼U(·)[f(x
∗)− f(x0)] (14)

xbest = argmax
x∈G

f(x)

where f(·) is the objective function, Ex0∼U(·) denotes the
expectation over a uniformly random initialization over the
support of x, G is set of points for grid search, and x∗ is
the parameter which yields the global maximum.

Proof. The proof follows from the observation that
Ex0∈{G}f(xbest) ≥ Ex0∼U(·)f(x0) and the rest of the proof
is trivial.

IV. EXPERIMENTS AND RESULTS

We train our LLP in simulation using NVIDIA Isaac
Gym [22]. We sample 100 steps from 4,000 environments
for a total of 400,000 samples per policy update. Each
policy is trained for 750 iterations giving 300 million total

Fig. 3. Left The training environment with procedurally generated footstep targets Center: The least-challenging test environment, with 100% infill and
no height variation. Right: The most-challenging test environment with 80% infill and 10 cm height variation

Fig. 4. A comparison of the proposed value-function-based approach with an
end-to-end RL policy. Each bar represents the average result of five rollouts.
The HLP enables the LLP to obtain higher normalized rewards than the end-
to-end policy in 10/12 terrains. Even on terrains much more difficult than the
ones encountered in training (90 / 0.05), our method achieves normalized
rewards greater than 100%.

samples. The training environment consists of terrain with
90% infill and terrain blocks with heights varying by up to
5 cm. In addition to our proposed method, we also train
an end-to-end reinforcement learning policy for comparision.
The experiments in this section are designed to answer the
following questions:

• How does our proposed optimization method perform
in quadruped locomotion over challenging terrain com-
pared to a PMTG [7] end-to-end policy?

• Does our proposed approach enable higher LLP rewards
than achieved during training?

In this section, we will first give more details on LLP
training, then define the end-to-end RL policy, and finally
discuss results on various test terrains.

A. Training Environment

We generate sequences of footstep targets corresponding
to a trotting gait, where the robot is tasked with hitting
targets for two feet at a time, alternating between the front-
left and rear-right feet and the front-right and rear-left feet.

We have found empirically that the trotting gait is the most
suitable for implementation on the Aliengo robot in terms of
robustness and speed. Each environment contains a sequence
of footstep targets parameterized by a random step length
sampled from U(0, 0.2) m and a random heading sampled
from U(0°, 360°). Additionally, all targets are independently
randomly shifted by U(−0.1, 0.1) m in the x and y directions.
The training terrain is pictured in Figure 3.

B. End-to-End RL Policy

We train an RL policy on the same training terrain with the
same trajectory generator action space [7] using PPO. The
reward function for the end-to-end policy contains all of the
reward terms and coefficients in section II-D sans the footstep
target reward and the velocity towards target reward. Addi-
tionally, to encourage forward locomotion, we add the reward
term given by Equation 15, where v is the robot velocity and
κV X is set to 1.0. The robot velocity (m/s) is clipped to en-
courage the development of stable gaits for a fair comparison.

κV X · clip(vx,−∞, 0.5) (15)

Additionally, we add a term to penalize velocity in the
y-direction, given below in Equation 16.

−κV Y |vy| (16)

C. Locomotion on challenging terrain

We test the trained policies on environments of varying
difficulty, depicted in Figure 3. Our simulation terrain varies
in difficulty along two axes: infill and height variation. An
infill lower than 100% indicates gaps or holes in the terrain.
The heights of terrain blocks are uniformly randomized such
that the maximum range of heights is equal to a terrain height
variation parameter. We run experiments on terrains with 100,
90, and 80 percent infill and 0, 5, 7.5, and 10 cm height
variation. For all experiments with the proposed method, we
set α in Equation 11 to 0.0, which corresponds to rewarding
footstep targets set in the positive x-direction. The weight of
the directional term (κHD in Equation 13) is set to 50.0 for
all experiments.

Fig. 5. Distance traveled in meters for each approach across different test
terrains. Each bar represents the average result of five rollouts.

1) Percentage of Per-Timestep Training Reward Achieved:
We use reward as a proxy for overall performance of each
method, since it encodes the core objective of hitting footstep
targets (or forward velocity, for the end-to-end policy) in
additional to other practical concerns such as avoiding colli-
sions and slipping. Since the proposed method and the end-
to-end method have differing reward functions, we normalize
rewards by the maximum reward achieved during training.
Figure 4 plots the normalized rewards achieved on our array
of test terrains. The HLP optimization process enables higher
rewards than those achieved in training in eight out of 12
terrains. The end-to-end policy cannot benefit from online
optimization, giving a lower normalized reward than our
proposed method on 10 out of 12 terrains.

2) Distance Traveled: Figure 5 shows that our proposed
method travels a shorter distance than the end-to-end method
in all but two environments. We posit that this is due to our
objective of picking high-value, or ”safe”, footstep targets to
execute. The largest gaps in distance occur in the 80% infill
environments, where the presence of holes stops forward
progress, since it is impossible to hit a footstep target over
a hole. Our method’s conservativism in such a scenario is
highlighed in the next subsection.

3) Collisions: Figure 6 gives the average number of
collisions per timestep. In two environments with 80% and
90% infill, the end-to-end policy experiences an extremely
high number of collisions, nearing an average of one collision
per timestep. We believe this is due to the end-to-end policy
getting stuck in a terrain hole, which does not occur with
our proposed method.

V. CONCLUSION

We propose a hierarchical reinforcement learning frame-
work that improves performance on simulated quadruped
locomotion over difficult terrain as demonstrated through
higher normalized rewards and lower numbers of collisions.

Fig. 6. A collision is defined as a robot linkage (excluding feet) in contact
with terrain, or a robot linkage in contact with another linkage. Multiple
collisions may be counted at a single timestep. Each bar represents the
average result of five rollouts.

By leveraging a novel approach where the HLP optimizes
over footstep targets using the LLP value function, we
remove the requirement for additional environment samples
or neural network parameter updates beyond LLP training.
Future work will focus on conducting hardware experi-
ments to further validate the applicability of our approach
in physical environments. Additionally, we aim to explore
integrating model-based controllers as the low-level policy, as
modularity is a practical benefit of hierarchical reinforcement
learning. A combination of model-based and learning-based
approaches offers a promising direction for further improving
the adaptability and reliability of quadruped locomotion in
complex real-world applications.

REFERENCES

[1] T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine,
“Learning to walk via deep reinforcement learning,” arXiv preprint
arXiv:1812.11103, 2018.

[2] S. Ha, P. Xu, Z. Tan, S. Levine, and J. Tan, “Learning to walk
in the real world with minimal human effort,” arXiv preprint
arXiv:2002.08550, 2020.

[3] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk
in minutes using massively parallel deep reinforcement learning,” in
Conference on Robot Learning. PMLR, 2022, pp. 91–100.

[4] W. Yu, J. Tan, Y. Bai, E. Coumans, and S. Ha, “Learning fast adapta-
tion with meta strategy optimization,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 2950–2957, 2020.

[5] A. Agarwal, A. Kumar, J. Malik, and D. Pathak, “Legged locomotion
in challenging terrains using egocentric vision,” in Conference on robot
learning. PMLR, 2023, pp. 403–415.

[6] R. Yang, M. Zhang, N. Hansen, H. Xu, and X. Wang, “Learning
vision-guided quadrupedal locomotion end-to-end with cross-modal
transformers,” arXiv preprint arXiv:2107.03996, 2021.

[7] A. Iscen, K. Caluwaerts, J. Tan, T. Zhang, E. Coumans, V. Sindhwani,
and V. Vanhoucke, “Policies modulating trajectory generators,” in
Conference on Robot Learning. PMLR, 2018, pp. 916–926.

[8] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
robotics, vol. 5, no. 47, p. eabc5986, 2020.

[9] W. Yu, D. Jain, A. Escontrela, A. Iscen, P. Xu, E. Coumans, S. Ha,
J. Tan, and T. Zhang, “Visual-locomotion: Learning to walk on
complex terrains with vision,” in 5th Annual Conference on Robot
Learning, 2021.

[10] A. Escontrela, G. Yu, P. Xu, A. Iscen, and J. Tan, “Zero-shot
terrain generalization for visual locomotion policies,” arXiv preprint
arXiv:2011.05513, 2020.

[11] A. Iscen, G. Yu, A. Escontrela, D. Jain, J. Tan, and K. Caluwaerts,
“Learning agile locomotion skills with a mentor,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2021, pp. 2019–2025.

[12] X. B. Peng, E. Coumans, T. Zhang, T.-W. Lee, J. Tan, and S. Levine,
“Learning agile robotic locomotion skills by imitating animals,” arXiv
preprint arXiv:2004.00784, 2020.

[13] S. Gangapurwala, M. Geisert, R. Orsolino, M. Fallon, and I. Havoutis,
“Real-time trajectory adaptation for quadrupedal locomotion using
deep reinforcement learning,” in 2021 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2021, pp. 5973–5979.

[14] S. Gangapurwala, A. Mitchell, and I. Havoutis, “Guided constrained
policy optimization for dynamic quadrupedal robot locomotion,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 3642–3649, 2020.

[15] V. Tsounis, M. Alge, J. Lee, F. Farshidian, and M. Hutter, “Deepgait:
Planning and control of quadrupedal gaits using deep reinforcement
learning,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp.
3699–3706, 2020.

[16] Z. Xie, H. Y. Ling, N. H. Kim, and M. van de Panne, “Allsteps:
Curriculum-driven learning of stepping stone skills,” in Computer
Graphics Forum, vol. 39, no. 8. Wiley Online Library, 2020, pp.
213–224.

[17] T. Li, N. Lambert, R. Calandra, F. Meier, and A. Rai, “Learning gen-
eralizable locomotion skills with hierarchical reinforcement learning,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2020, pp. 413–419.

[18] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke et al., “Scalable
deep reinforcement learning for vision-based robotic manipulation,” in
Conference on robot learning. PMLR, 2018, pp. 651–673.

[19] J. Li, C. Tang, M. Tomizuka, and W. Zhan, “Hierarchical plan-
ning through goal-conditioned offline reinforcement learning,” IEEE
Robotics and Automation Letters, vol. 7, no. 4, pp. 10 216–10 223,
2022.

[20] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[21] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estima-
tion,” arXiv preprint arXiv:1506.02438, 2015.

[22] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa et al., “Isaac gym:
High performance gpu-based physics simulation for robot learning,”
arXiv preprint arXiv:2108.10470, 2021.

