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Abstract—Vision-based policies for robot manipulation have
achieved significant recent success, but are still brittle to
distribution shifts such as camera viewpoint variations. One
reason is that robot demonstration data used to train such
policies often lacks appropriate variation in camera viewpoints.
Simulation offers a way to collect robot demonstrations at
scale with comprehensive coverage of different viewpoints, but
presents a visual sim2real challenge. To bridge this gap, we
propose an unpaired image translation method with a novel
segmentation-conditioned InfoNCE loss, a highly-regularized
discriminator design, and a modified PatchNCE loss. We find
that these elements are crucial for maintaining viewpoint
consistency during translation. For image translator training,
we use only real-world robot play data from a single fixed
camera but show that our method can generate diverse unseen
viewpoints. We observe up to a 46% absolute improvement
in manipulation success rates under viewpoint shift when we
augment real data with our sim2real translated data.

I. INTRODUCTION

There has been significant progress in learning vision-
based policies for manipulation tasks based on demonstra-
tions. This includes recent Transformer-based architectures
trained via behavior cloning methods [1] as well as large-
scale vision-language-action (VLA) models [2], [3]. Unlike
pure vision or language training, which can be scraped
from the web, robot demonstration data is scarce and lacks
diversity; even pre-trained models must be fine-tuned to
achieve significant performance under environment or view-
point shifts. As a result, there remains a significant challenge
in obtaining diverse, high-quality demonstration data for
downstream tasks.

In order to achieve generalization, a comprehensive robot
demonstration dataset must cover all scene and task vari-
ations the robot may encounter during deployment. Practi-
cally however, it is onerous to collect tabletop manipulation
datasets that have a range of camera viewpoints since they
often employ fixed, third-person cameras [4]–[6]. Cameras
may be fixed to provide consistent environments for visual
policy evaluation or due to the cost of recalibrating cameras,
especially in conjunction with other sensors such as depth
or motion capture sensors. Indeed, we have observed empir-
ically that when robot polices are trained on fixed-camera
datasets, changes in camera viewpoint during deployment
causes drastic decrease in performance (Table II). Adapting
or generalizing to unseen viewpoints is difficult because the
viewpoint affects all objects in the scene, and the model must
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Fig. 1. (a) Standard image translation methods fail to generalize to new
viewpoints when trained on fixed-viewpoint target domain dataset. (b) Our
method enables realistic generation of unseen viewpoints

implicitly estimate the robot’s position relative to the new
camera position. Therefore, demonstration data with diverse
viewpoints must be incorporated into the training dataset.

To this end, we propose to instead generate simulated
demonstrations covering diverse viewpoints and propose a
method for bridging the visual sim2real gap. One option
is to add visual domain randomization in simulation for
lighting, textures, and colors [8]–[10]. Other researchers
opt instead to improve simulator realism [11] – a labor-
intensive engineering effort which must be done for every
scene. In leiu of simulation engineering, we propose learning
a generative, segmentation-conditioned unpaired image-to-
image translation model mapping from sim to real. Our
model is trained on a small, real-world play dataset collected
from a single fixed camera that is then able to generate a
range of diverse viewpoints (Figure 1). The output of our
entire pipeline is a dataset of synthetic demonstrations which
can be combined with a small amount of real demonstrations
and fed into any downstream learning algorithm.
Our core contributions are as follows:

1) A sim2real image translation method incorporating a
novel, segmentation-informed contrastive InfoNCE loss
capable of preserving unseen simulation viewpoints
during translation

2) Experimental proof that demonstrations generated with
our simulation plus translation pipeline improves
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Fig. 2. Our proposed image translation method is trained on unpaired real and sim images, specifically a real dataset obtained with a fixed camera and a
simulation dataset with diverse camera viewpoints. To ensure the simulation viewpoint is preserved during translation, we employ a novel segmentation-
based InfoNCE loss, a modified PatchNCE loss from [7], and a novel patch-sampling process to regularize the discriminator D.

downstream robot policy robustness to shifts in camera
position

3) Analysis of why our method is successful on the
domain of robot demonstration datasets in comparison
to the many other approaches developed for the generic
problem of unpaired image translation

Code and videos can be found at
www.sites.google.com/view/sim2real-viewpoints.

II. RELATED WORK

A. Visual Sim2Real Translation for Robotics

A wide variety of unpaired image-to-image translation
architectures exist. Among the most prominent are
CycleGAN [12], CUT [7], EGSDE [13], StarGAN [14],
DualGAN [15], OASIS [16], and ILVR [17]. To translate
from sim2real, robotics practitioners can train these models
on datasets collected from simulation and real-world robot
observations. For example, in [18] and [19], the authors train
an unmodified CycleGAN to translate visual observations
for grasping and navigation.

Others have tailored these methods to the specific robotics
and policy-learning applications. DigitalTwin-CycleGAN
adds an action cycle-consistency loss to CycleGAN for a
sim2real visual grasping task [20]. This loss means their
image translation model depends on learning a successful
grasping policy concurrently. RL-CycleGAN incorporates Q-
function consistency on translated images [21], where the Q-
function is obtained while learning a task-specific RL policy.
RetinaGAN enforces cycle consistency with an object detec-
tor which requires thousands of labeled images to train be-
forehand [22]. GraspGAN trains an image translation model
without cycle-consistency and instead enforces accurate im-
age content translation through a grasp success predictor [23].
Additionally, they include an auxiliary generator objective of
reproducing the ground-truth sim image segmentation.

CyCADA places these methods within a more general
framework with the concept of a ”task loss” [24]. The authors
train image translation models which enable source-domain
images to be segmented or classified with models trained
on the target-domain. In contrast, our proposed method is
agnostic to the downstream learning algorithm, enabling us
to train one image translation model for many tasks.

Diffusion models [25] have emerged as the primary ar-
chitecture for image generation over generative adversarial
networks (GANs) [26], with some exceptions [27]–[29].
However, we find that for the specific domain of unpaired
image-to-image translation, GANs obtain results competitive
with the best diffusion approaches [13]. We hypothesize that
that multimodal capabilities that enable diffusion models to
generate diverse outputs are not an advantage when the style
and content of the generated image are tightly-specified by
the input image and target domain dataset, respectively. Our
proposed method uses a GAN; however in theory our novel
segmentation-based InfoNCE loss could be applied to any
image translation architecture containing a generator network
with spatially-indexed latent feature maps.

B. Robot Viewpoint Invariance

RoboNet offered early proof that training a robot policy
on multiple views helps it generalize across these views
[30]. Multi-view Masked World Models (MV-MWM) [31]
demonstrates impressive robustness to camera viewpoints
by training a viewpoint-invariant visual encoder and task-
specific world model. They showcase real-world robot exper-
iments, relying on small sim2real gap for sim2real transfer.
In contrast to the MV-MWM evaluation environment with
a solid black background a white tabletop, we evaluate our
downstream polices in a messy lab environment.

MoVie [32] achieves view generalization by adapting
the policy’s image encoder to the novel views encountered
during test-time. We do not do any test-time adaptation or
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require any real-world images from viewpoints other than a
single fixed-camera. [33] trains an RL policy that is robust
to single-camera viewpoint changes after learning from a
teacher policy trained with a multi-view observation. Impres-
sively, VISTA leverages pretrained models with 3D priors to
generate novel viewpoints given a single real-world image
observation [34]. However, since they do not use simulation-
generated demonstrations they are unable to generate new
robot trajectories and must rely on human demonstration col-
lection. 3D representations are inherently viewpoint invariant,
but building good representations typically requires more data
than a single 2D image. For example, GROOT [35] achieves
viewpoint invariance but requires depth imaging.

There are real world collection efforts with custom-built
platforms incorporating easily-movable cameras. Real-world
datasets that are sufficiently large to cover a large range of
viewpoint variations should train policies that serve as the
upper-bound of viewpoint robustness. Viewpoint variations
further increase the amount of data required and labor per
demonstration [36] [5].

III. METHOD

We propose a novel unpaired image-to-image translation
method to translate image observations from the simulation
domain to the real world domain (Figure 2). The objective
of unpaired image-to-image translation is to translate images
from domain A to domain B without access to a paired
dataset of images Dpaired = {dA, dB |dA ∈ A, db ∈ B}Ni=0.
Instead, we learn from two separate datasets DA and DB .
In our problem setting, domain A is simulation, domain
B is the real-world, and |DA| > |DB |. This problem is
considered unsupervised because there is no label, or ground-
truth image, in DB that images in DA should map to.

Image translators must change the style of the input image
while preserving its content. We employ the GAN architec-
ture with a novel, highly-regularized discriminator to learn
the target domain style. For accurate content preservation,
we use the InfoNCE [37] loss between input and output
image features in a similar style as CUT [7], but with a
modified scoring function. Additionally, we propose a novel
segmentation-based InfoNCE loss on generator features. With
our method, we can train a model on a small, fixed-viewpoint
dataset DB which is capable of accurate geometric content
translation to diverse, unseen viewpoints.

A. Style Loss

We use the standard GAN loss [26] to enforce target
domain style on the generated images, given by Equation
1. G is the generator network, and D is the discriminator
network.

LGAN(G,D,DA,DB) = Ex∼DB
log(D(x))

+ Ey∼DA
log(1−D(G(y)))

(1)

One assumption underlying image-translation GANs, such as
CycleGAN [12] and CUT [7], is that the shared attributes
among all images in DB constitute the target domain ”style”.

However, our real-world robot image observations in DB

only differ from one another in robot and object poses.
Much of the image content, such as the background and
tabletop, is nearly identical in all images in DB . A naı̈ve
discriminator will memorize the repetitive details and force
the generator to recreate them. To mitigate this problem,
Pix2pix [38] proposed a ”PatchGAN”, where the discrimi-
nator only receives local image patches and cannot therefore
enforce global image elements. We take this a step further and
randomly sample patch locations and apply per-patch random
rotations. This process is shown in Figure 3. The result is
a highly-regularized discriminator capable of enforcing the
style of DB on images with viewpoints not seen in DB .

Fig. 3. Discriminator D Patch Sampling Process

B. Content Loss

Our content translation loss consists of two parts: a modi-
fied version of the PatchNCE loss from CUT [7] and a novel
segmentation-based NCE loss.

1) Modified PatchNCE Loss: The PatchNCE loss from
CUT [7] applies an info noise-contrastive estimation [39]
(NCE) loss across encoder features generated by a source
domain image dA ∈ DA and its corresponding translated
output image G(dA). For an input image d, we randomly
sample N latent features from the encoder’s feature map at
L different layers. We call the set of features at layer l Zl and
|Zl| = N ∀ l ∈ {l0, ..., lL}. The translated image d̂ is passed
through the encoder again to obtain |Ẑl| ∀ l ∈ {l0, ..., lL}.
All Ẑl are obtained from the same feature map indices as in
Zl.

The InfoNCE loss for feature i in encoder layer l is given
by Equation 2. This is the categorical cross-entropy loss
on the probability that a feature z ∈ Z will be correctly
classified as the corresponding feature in Ẑ , based on a



scoring function ρl(·). See [7] for further details. τ is a
temperature hyperparameter.

ℓNCE(l, z, Ẑ, i) = − log

 exp (ρl(z, ẑi)/τ)∑
ẑ∈Ẑ

exp (ρl(z, ẑ)/τ)

 (2)

ρl(·) is defined in Equation 3. Features zi and zj are passed
through a function Hl then scored with cosine similarity.

ρl(zi, zj) =
Hl(zi) ·Hl(zj)

∥Hl(zi)∥∥Hl(zj)∥
(3)

The full loss is given in Equation 4

LPatchNCE(G,H,D) = Ed∼D

L∑
l=1

|Zl|∑
i=1

ℓNCE( l, zl,i, Ẑl, i )

(4)
The assumption behind Equation 2 is that input and output

features from the same feature map locations are ”positive”
samples and should have high similarity scores. All other
features are ”negative” samples and should be repelled.
However, we observe that many different input image patches
are highly similar due to repeated patterns or textures in
robot image datasets, which include background elements,
the tabletop, etc. Furthermore, in the simulated image dataset
DA, these regions all have identical pixel values. Therefore,
Equation 2 will repel many false negative features.

To mitigate this, we modify the scoring function. If the
cosine similarity of a negative sample exceeds a threshold
θ, we scale the value down by a factor 0 ≤ α < 1. The
modified scoring function is given by Equation 5.

ρ̃l(zi, zj) =

{
αρl(zi, zj) if ρl(zi, zj) > θ and i ̸= j,

ρl(zi, zj) otherwise.
(5)

We have empirically found this to be more effective than
increasing τ . We denote the modified NCE loss which uses
the scoring function in Equation 5 as L̃PatchNCE.

2) Segmentation NCE Loss: We leverage the simulator
used to generate DA to obtain ground-truth segmentation
maps for each image. We propose an InfoNCE loss which
clusters generator features based on segmentation category
in order to ensure that semantic segmentation boundaries
are preserved during translation. We note that for object-
centric manipulation, this is a crucial aspect to preserve when
training policies.

Each image in DA contains C segmentation classes
and each feature zi ∈ Z generated from d ∼ DA has an
associated class label yi ∈ Y . In the case when a layer’s
feature map is of a lower resolution than the input image,
we scale the image segmentation with nearest-neighbors
downsampling to obtain Y .

The Segmentation NCE (SegNCE) loss is defined in Equa-
tion 6. In contrast to ℓNCE as shown in Equation 2, there
are multiple positive samples for the query feature zi. All
features that are members of the same segmentation class as
the query feature are positive samples assigned the index j.

In Equation 2, the target distribution for the cross-entropy
loss is a one-hot vector. In Equation 6 the target distribu-
tion is a uniform distribution over features from the same
segmentation class and zero elsewhere.

Here, we use the original scoring function ρl(·) defined in
Equation 3; since we are operating with ground-truth image
segmentations, there are no false negatives.

ℓSegNCE(l,Z, i,Y) =

1{
j

∣∣∣∣j∈1..|Z|
yj=yi

i ̸=j

} ∑
{
j

∣∣∣∣∣j∈1..|Z|
yj=yi

i ̸=j

} ℓNCE(l, zi,Z, j) (6)

The full loss term is given in Equation 7.

LSegNCE(G,H,DA) = Ed∼DA

L∑
l=1

S∑
i=1

ℓSegNCE(l,Zl, i,Yl)

(7)
The SegNCE loss is computed from input image generator

features only.

C. Model training

The total loss function for G is given in equation 8. We
include an identity PatchNCE loss following [7]. The full
discriminator loss is given in Equation 9 and is simply the
GAN objective.

LG = L̃PatchNCE(G,H,DA)

+L̃PatchNCE(G,H,DB)

+LSegNCE(G,H,DA)

+LGAN(G,D,DA,DB)

(8)

LD = −LGAN(G,D,DA,DB) (9)

IV. EXPERIMENTS

Our experiments are designed to answer the following
questions:

1) How well can the proposed image translation method
generalize to unseen real-world viewpoints?

2) Does the synthetic data generated with the proposed
method and used for imitation learning make a down-
stream real-world robot policy more robust to shifts in
camera position?

3) How does robot policy performance scale with sim
data generated with our proposed method vs real world
data?

For all experiments, we use a Coke can grasping task we
call pick coke with a Franka arm.



Fig. 4. Samples of translated images. Our proposed method achieves realistic results and preserves object locations and boundaries.

A. Image Translation
1) Training Details: Our generator G is a 12M parameter

ResNet-based network. The discriminator D is a wider three-
layer CNN with 11M parameters. Additionally, we parame-
terize the Hl in Equations 3 and 5 as a 2-layer MLP with
700k parameters.

For benchmarking image translation results, we use a
dataset of 256×256 images. DA is a dataset of 1,775 simu-
lated pick coke demos with camera viewpoints random-
ized within a box of dimensions (50, 50, 20) cm (L×W×H).
DB contains 745 images obtained from roughly 2 and a half
minutes of coke can play data. Training a single model takes
approximately 20 hours on an RTX 2080 Ti GPU.

We curate two test datasets: In-Distribution (ID) Cam-
era and Out-of-Distribution (OOD) Camera. Each test set
contains 25 pairs of sim and real images from unseen
viewpoints. ID Camera contains real and sim images with
the same camera randomization range as the training sim
images in DA: (50, 50, 20) cm. OOD Camera tests viewpoints
randomized within a box of size (100, 100, 84) cm but
excludes viewpoints contained in ID Camera. In order to
recreate real images in sim, we use AprilTags and robot
proprioception.

2) Metrics: We report on two metrics for image trans-
lation: segmentation mean intersection over union (mIOU)
and Frénchet Inception Distance (FID) score. The former
measures how well image content is translated, while the
FID Score measures how semantically similar the generated
images are to the real images.

To find mIOU, we compare a segmentation of the gen-
erated image with the ground-truth segmentation from the
simulation. To segment generated images, we use the open-
world segmentation model lang-SAM [40]. For the pick
coke scenes, we query three segmentation categories with
prompts (”Franka arm”, ”coke”, ”table”), while a fourth
”background” category consists of the remaining pixels.

3) Results: Table I gives the scores of our proposed
method against baselines and ablations. Our proposed method
obtains the lowest FID score by a wide margin on ID Camera.

TABLE I
UNPAIRED IMAGE TRANSLATION FID(↓) AND MIOU(↑) SCORES.

METRICS ARE AVERAGED ACROSS TWO RANDOM SEEDS. OUR NOVEL
DISCRIMINATOR DESIGN HAS THE HIGHEST IMPACT. OUR PROPOSED
METHOD SHOWS IMPRESSIVE GENERALIZATION EVEN WHEN DA IS

FIXED-CAMERA.

Method ID Camera OOD Camera

FID(↓) mIOU(↑) FID(↓) mIOU(↑)

No Translation 411.2 0.88 379.7 0.85

CUT [7] 312.3 0.54 344.3 0.52
CycleGAN [12] 323.7 0.53 360.0 0.51

Basic D 331.5 0.54 362.0 0.43
Without SegNCE loss 177.6 0.79 226.5 0.70
Without ρ̃l(·) 171.6 0.82 212.6 0.70
Fixed-cam DA 214.7 0.84 280.3 0.83
Proposed Method 167.9 0.82 219.7 0.70

The novel patch discriminator D has the largest impact on
all metrics, highlighting its importance in this domain. ”No
Translation” represents the upper bound for the mIOU and
FID Score. An mIOU values less than 1.0 here reflects errors
made by lang-SAM and small discrepancies in camera and
object pose estimation obtained from AprilTags.

Translated image results are given in Figure 4. Methods
without the novel D design are not able to maintain seg-
mentation boundaries, as can be seen by the generated table
positions on the OOD camera translations. We suspect that
the SegNCE loss and the thresholding done in ρ̃l(·) fulfill
similar functions given the high image quality when these
are ablated separately.

Impressively, when our proposed method is trained on
fixed-cam simulated data (as opposed to sim data with ID
camera randomization), it still produces competitive metrics.
From Figure 4, one can observe visual aberrations in the
background and on the arm, but the major segmentation
boundaries are preserved.

Note that while the relative FID scores correlate with
image quality, the numbers are high compared to results
reported in other literature. We posit that this is due to the



TABLE II
SUCESS RATES ON PICK COKE TASK. WITHOUT DATA PRODUCED FROM OUR METHOD, POLICIES FAIL WHEN CAMERA POSITION IS SHIFTED. WE

ALSO OBSERVE PERFORMANCE SCALES WITH THE AMOUNT OF SIMULATED TRANSLATED DATA

Policy Training Demonstrations Evaluation Viewpoints

Fixed-cam real demos Simulated demos Sim Camera Randomization Visual Sim2real Method Fixed ID OOD

100 0 - - 5/15 0/15 0/15

100 500 ID None 9/15 0/15 1/15
100 500 ID + OOD None 2/15 0/15 0/15

100 500 ID Domain Randomization 1/15 1/15 0/15
100 500 ID + OOD Domain Randomization 4/15 0/15 0/15

100 500 ID Ours 12/15 4/15 1/15
100 500 ID + OOD Ours 9/15 2/15 2/15

100 1000 ID Ours 13/15 2/15 1/15
100 1000 ID + OOD Ours 8/15 7/15 3/15

100 1500 ID Ours 14/15 6/15 4/15

small size of our test sets (25 images each) and that our
robotics lab scene may be OOD for the Inception network
used for FID Score.

We hypothesize that off-the-shelf methods like CUT and
CycleGAN struggle on robot data due to lack of diversity.
Typically, unpaired image-to-image translation methods are
tested on computer vision benchmark datasets containing
diverse images scraped from the internet. In comparison,
robotics datasets contain limited diversity. To support this
claim, we computed average pairwise LPIPS [41] on various
image datasets and on our own dataset, shown in Table III.
Our DB shows the lowest score for diversity.

TABLE III
AVERAGE PAIRWISE LPIPS ON NATURAL IMAGE DATASETS. A CORE

CHALLENGE IN ROBOT LEARNING IS LACK OF DATASET DIVERSITY AS
COMPARED TO WEB DATA.

† AVERAGE PAIRWISE LPIPS COMPUTED ON 1000 RANDOMLY SAMPLED
IMAGES.

Dataset Average Pariwise LPIPS (↑)

Laion-5B† 0.725
ImageNet† 0.819
Cifar-10† 0.221
Cifar-100† 0.250
Horse2zebra DA (Horses) 0.747
Horse2zebra DB (Zebras) 0.765
Seg2Cityscapes DB (Real) 0.548
pick coke DB (Real) 0.155

B. Robot Grasping Experiments

We train pick coke grasping policies on a combined
set of fixed-viewpoint real-world human demonstrations and
variable viewpoint translated sim demonstrations. To collect
human demonstrations, we use a modified OPEN TEACH
VR teleoperation platform [42]. Our robot environment,
sample observations, and policy rollouts are shown in Figure
6.

1) Policy Training and Evaluation Details: We train ac-
tion chunking transformer (ACT) [1] policies on our gener-

ated data. ACT was chosen to isolate the effects of our image
data as it does not incorporate any pretraining or language
conditioning. Additionally, policies are trained without pro-
prioception inputs so that they must rely entirely upon image
observations to predict actions.

We train each ACT policy for 8,000 epochs with a chunk
size of 10. Rollouts are done with temporal aggregation
turned on. Success is defined as a successful grasp of the
Coke can without dropping.

In addition to our own sim2real method, we compare
against policies trained with simulated demos with no trans-
lation applied and with visual domain randomization (Figure
5). For domain randomization we follow [8] and randomize
color, texture, and lighting for all objects in the scene.

Fig. 5. Samples of domain randomized visual observations

2) Results: Results for the pick coke task are shown
in Table II.

We observe that our method is necessary for viewpoint
robustness, as compared to ACT models trained on fixed-
cam human demonstrations only, which obtain a success
rate of 0 under any camera variation. We also observe
that our method is necessary to bridge the sim2real gap,
since the policies trained on sim demos without translation
obtain a similarly negative result on ID and OOD cameras.
Finally, we can see that performance scales positively with
the number of translated demonstrations produced by our
method. The highest success rate for the challenging OOD
camera positions was achieved by an ACT model trained on
1500 of our translated demos, the highest amount we tested.
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Fig. 6. (a) Our test setup, showing the 0.5m ID viewpoint box and the 1m OOD viewpoint box. (b) Sample ACT observations (c) Policies trained on
fixed-viewpoint human demos only are brittle to small camera shifts. (d) Polices struggle to learn viewpoint robustness on untranslated sim demos. (e-f)
Our translation method is robust to ID and OOD camera viewpoint shifts.

3) Failure Cases: We observe two common failure cases
of trained ACT policies. The robot lacks depth information,
leading to grasp attempts that occur when the gripper is
aligned with the coke can from the camera’s perspective but
mispositioned along the camera’s z-axis. The second failure
case occurs when the Franka end-effector is framed by the
background instead of the table, which typically occurs when
testing an OOD viewpoint. The ACT policy begins to output
repetitive actions which do not seem to correlate with any
trajectory in the demonstration dataset. We hypothesize that
this is due to degraded or unrealistic background generation
in translated OOD image observations.

V. CONCLUSIONS AND LIMITATIONS

We train a novel image generation method on simulated
and real robot data. We observe that with only fixed-camera
real data, our novel SegNCE loss, discriminator design, and
modified PatchNCE loss enable generation of novel views.
Our method improves the robustness of downstream imitation
learning policies to camera shift, as demonstrated by success
rates on a manipulation task. We observe that our method is
necessary for sim2real transfer and that robot performance
scales with the number of translated demos and their range
of camera randomization.

There are several limitations to this work. When translating
sim images with large camera shifts, our method fills the
background by repeating textures and scene elements (a
result of the fixed-camera training dataset). This can create
a sim2real gap for the downstream imitation learning policy.
Additionally, our generated demonstrations are dependent on
a small amount of human demonstrations to enable viewpoint
robustness in robot policies.

Future work includes further investigation of scaling trends
and training multi-task or multi-scene translation models.
Ultimately, we believe visual sim2real is a powerful tool for
scaling robot learning datasets.
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