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Introduction: Motivation

e \Wheeled platforms are mostly limited to flat ground
e Legged embodiments can go anywhere humans may go
e This enables embodied intelligence to be applied in a much wider variety of situations
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https://news.mit.edu/2018/blind-cheetah-robot-climb-stairs-obs Lee, Joonho, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and
tacles-disaster-zones-0705 Marco Hutter. "Learning quadrupedal locomotion over challenging
terrain." Science robotics 5, no. 47 (2020).



Introduction

e Quadrupedal locomotion is a difficult controls problem
o Requires expert knowledge of dynamics and task
o Controllers may be brittle to gains, dynamics model, and contact conditions
o  Hybrid dynamics

MPC (0.04kHz)

Simplified model

FIGURE 1 | A quadruped robot, ANYmal, with potential external disturbances
F, and contact forces A within friction cones during static walking.

Kim, Donghyun, Jared Di Carlo, Benjamin Katz, Gerardo Bledt, and Sangbae Kim.
"Highly dynamic quadruped locomotion via whole-body impulse control and model
predictive control." arXiv preprint arXiv:1909.06586 (2019).

Xin, Guiyang, Wouter Wolfslag, Hsiu-Chin Lin, Carlo Tiseo, and Michael Mistry. "An
optimization-based locomotion controller for quadruped robots leveraging cartesian
impedance control." Frontiers in Robotics and Al 7 (2020): 48.



Introduction

e Model-free reinforcement learning is a general way to automatically learn

robot locomotion skills
o Training a robot in simulation is desirable due to sample inefficiency of RL algorithms and
dangers of training policies on real robot

Fig. 1: The simulated and the real Minitaurs learned to gallop
using deep reinforcement learning.

Tan, Jie, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner,
Steven Bohez, and Vincent Vanhoucke. "Sim-to-real: Learning agile locomotion
for quadruped robots." arXiv preprint arXiv:1804.10332 (2018).



Introduction

Many times in RL, the test environment is the training environment.

BeamRider Breakout KungFuMaster MsPacman

Pong Qbert Seaquest Sp.Invaders

Image source:https://syncedreview.com/2020/01/08/sIm-lab-new-rl-research-benchmark-software-framework/



Introduction

In sim2real, the test environment is different from the training environment.

Train Test



Introduction

Formally, the task of quadrupedal locomotion can be represented as a Partially Observable Markov
Decision Process (POMDP):
(SvAvpv Taanvpo 7’7)

S = state space

A = action space

p: S x A Sis the environment transition function
r: S+ R is the reward function

) = he observation space

O = is the observation conditional probabilities

po = distribution of initial states

~ = discount factor

The goal of reinforcement learning is to find the optimal policy 1T that maximums the discounted sum of rewards.
T
J(7) = Biwom Z’ytr (st,ar)
t=0
m* = arg max J(m)

However, when transferring from sim2real, the POMDP changes unpredictably.
0O—0

p—p



Introduction
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Policies Modulating Trajectory Generators

Iscen, Atil, Ken Caluwaerts, Jie Tan, Tingnan Zhang, Erwin Coumans, Vikas Sindhwani, and Vincent Vanhoucke. "Policies
modulating trajectory generators." In Conference on Robot Learning, pp. 916-926. PMLR, 2018.



Literature Review: Policies Modulating Trajectory Generators

Key ldeas for sim2real transfer: Domain randomization and small observation space

Observation:

° IMU (pitch, roll,
pitch velocity, roll
velocity)

. Speed command

Reward:
° Track speed
command

Iscen, Atil, Ken Caluwaerts, Jie Tan, Tingnan Zhang, Erwin Coumans, Vikas Sindhwani, and Vincent Vanhoucke. "Policies modulating trajectory generators." In
Conference on Robot Learning, pp. 916-926. PMLR, 2018.

Policy network

—>[ Trajectory generator (TG) ]—

Environment

Action:
° Joint position targets



Literature Review: Policies Modulating Trajectory Generators

A We use Automatic Domain Randomization (ADR)
to collect simulated training data on an ever-growing
distribution of randomized environments

TABLE 1
RANDOMIZED PARAMETERS AND THEIR RANGE USED IN TRAINING.
| parameter | lower bound | upper bound |
mass 60% 160% <
motor friction 0.0Nm 0.2Nm
inertia 25% 200%
motor strength 50% 150%
latency Oms 80ms
battery voltage 10V 18V
contact friction 0.2 125
joint friction 0.0Nm 0.2Nm

Yu, Wenhao, Jie Tan, Yunfei Bai, Erwin Coumans, and Sehoon Ha. "Learning fast adaptation with meta strategy
optimization." IEEE Robotics and Automation Letters 5, no. 2 (2020): 2950-2957.

Akkaya, llge, Marcin Andrychowicz, Maciek Chociej, Mateusz
Litwin, Bob McGrew, Arthur Petron, Alex Paino et al. "Solving
rubik's cube with a robot hand." arXiv preprint arXiv:1910.07113
(2019).

Iscen, Atil, Ken Caluwaerts, Jie Tan, Tingnan Zhang, Erwin Coumans, Vikas Sindhwani, and Vincent Vanhoucke. "Policies modulating trajectory generators." In Conference on Robot Learning, pp. 916-926. PMLR, 2018.



Literature Review: Policies Modulating Trajectory Generators

The learned policy transfers directly to the real world.

Figure 9: Minitaur robot walking using the learned controller.

Iscen, Atil, Ken Caluwaerts, Jie Tan, Tingnan Zhang, Erwin Coumans, Vikas Sindhwani, and Vincent Vanhoucke. "Policies modulating trajectory generators." In Conference on Robot Learning, pp. 916-926. PMLR, 2018.



Literature Review: Policies Modulating Trajectory Generators

The simZ2real strategy relies on robustness of the policy

e Small observation space plus randomization prevents the policy from overfitting to training
environment
e However, optimality is sacrificed for robustness
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Fig. 9: Comparison of controllers trained with different obser-
vation spaces and randomization. The blue and red bars are the
§ - . performance in simulation and in the real world respectively.
different body inertia. Error bars indicate one standard error.

Fig. 7: Performance comparison of controllers that are trained
with (red) and without (blue) randomization and tested with

Figures from:
Tan, Jie, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez, and Vincent Vanhoucke. "Sim-to-real: Learning agile locomotion for quadruped robots." arXiv preprint arXiv:1804.10332 (2018).



Learning Fast Adaptation with Meta Strategy
Optimization

Yu, Wenhao, Jie Tan, Yunfei Bai, Erwin Coumans, and Sehoon Ha. "Learning fast adaptation with meta strategy
optimization." IEEE Robotics and Automation Letters 5, no. 2 (2020): 2950-2957.



Literature Review: Learning Fast Adaptation with Meta Strategy Optimization
Main idea

e Condition policy on a latent space which adapts to environment parameters.
e Collect samples from real robot to train latent space to adapt to real world.

Task: Forward locomotion
Observation: joint states, IMU
Action Space: joint positions
Reward: forward speed

Fig. 6. Policy trained by MSO adapts to new tasks: front right leg weakened (top), walking up a slope (bottom).

Yu, Wenhao, Jie Tan, Yunfei Bai, Erwin Coumans, and Sehoon Ha. "Learning fast adaptation with meta strategy optimization." IEEE Robotics and Automation Letters 5, no. 2 (2020): 2950-2957.



Literature Review: Learning fast adaptation with meta strategy optimization

|

2D latent
space

Create n environments with physics parameters p., Y,, ...,J,

| |

2D latent 2D latent
space space

| |

2D latent 2D latent
space space

Observation

=

Policy Network
(MLP)

Latent space and policy are trained with
AudHRBRRd SRARINS WA I[ARBS MS AR
prot8&{IRBs no explicit knowledge of .

Algorithm 1 Meta Strategy Optimization

1: Randomly initialize policy weights 6;.
2: fort=1:kdo
3 Sample n tasks {p;li =1,...,n}.
For each p;, solve Eq. 5 with 6; and obtain c,,, ;.
for j=1:hdo
Randomly sample a pair of (c, ¢, ).
Collect rollouts with p,, and 7, (s, C, ).

Obtain ;1 by solving Equation 6.
return 7y,

00 B IO oy




Literature Review: Learning Fast Adaptation with Meta Strategy Optimization

e Adaptation is successful with < 4000 samples gathered on real robot (about 75 seconds)
e Adapts to a wide range of tasks not encountered during training (walking up slope, weakened
motor, wide randomization range)

- Performance on real robot

3.5
3.0

2.5

2.
1.5
1.0
0.5
DR MSO

Fig. 1. Policies trained using our method adapts to sloped surface 0.0 SO-PUP

on the real quadruped robot in 15 episodes. During training in

simulation, it has only seen flat ground. Fig. 3. Sim-to-real performance comparison on the Minitaur robot
(corresponding to Task 1: Sim-to-real transfer as described in V-B).
Error bar denotes on standard deviation.

Return
o

Yu, Wenhao, Jie Tan, Yunfei Bai, Erwin Coumans, and Sehoon Ha. "Learning fast adaptation with meta strategy optimization." IEEE Robotics and Automation Letters 5, no. 2 (2020): 2950-2957.



Literature Review: Learning Fast Adaptation with Meta Strategy Optimization

Drawbacks

e Samples must be collected on the real robot (no free lunch)

e Training on the real robot requires a motion capture system in order to obtain robot state to
give rewards

e New samples must be collected whenever the environment changes

Yu, Wenhao, Jie Tan, Yunfei Bai, Erwin Coumans, and Sehoon Ha. "Learning fast adaptation with meta strategy optimization." IEEE Robotics and Automation Letters 5, no. 2 (2020): 2950-2957.



Learning Agile Robot Locomotion Skills by
Imitating Animals

Peng, Xue Bin, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey Levine. "Learning agile robotic
locomotion skills by imitating animals." arXiv preprint arXiv:2004.00784 (2020).



Literature Review: Learning Agile Robotic Locomotion Skills by Imitating Animals

Task: Imitate motion capture clips from animals
Observation: previous action, robot joint states, goal joint states
Action Space: joint positions

Reward: track reference trajectory

: o7 &
Ry
noL2

Peng, Xue Bin, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey Levine. "Learning agile robotic locomotion skills by imitating animals." arXiv preprint arXiv:2004.00784 (2020).




Literature Review: Learning Agile Robotic Locomotion Skills by Imitating Animals

The pipeline consists of three steps:

1)  Motion Targeting

2)  Motion Imitation
e Robot is trained to imitate the reference behavior in a PyBullet simulation
3) Domain Adaptation via a latent space method

Peng, Xue Bin, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey Levine. "Learning agile robotic locomotion skills by imitating animals." arXiv preprint arXiv:2004.00784 (2020).



Literature Review: Learning Agile Robotic Locomotion Skills by Imitating Animals

Training

e |atent space is sampled from stochastic encoder, which has access to simulation physics
parameters (M)

e Trained with Proximal Policy Optimization (PPO)

e Uses information bottleneck loss term

Testing

e Latent space is learned via Advantage Weighted Regression (AWR) through collecting samples on
the real robot

S 512 256
Policy [ >QE(>Q:{> i ' EE” T—1
5 mpg arg ‘gax Epnpu)Ezn @) Erap(rin,p.2) Z vy (14)
Z . t=0
256 128 Vo
i'i — B Eprp(u) DL [E(|2)]|p()]]
Encoder /,L:()QI:J}Q[:"} g n~p(pe)
mpg

Policy Network Optimization Problem (Next Slide)
Policy Network Architecture

Peng, Xue Bin, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey Levine. "Learning agile robotic locomotion skills by imitating animals." arXiv preprint arXiv:2004.00784 (2020).



Literature Review: Learning Agile Robotic Locomotion Skills by Imitating Animals

-1
L. Discounted sum
arg max By p(p)Ezn B(z|p) Ermp(r|np.2) !Z 2] ”J = of rewards

— B Ep~p(p) [DxwL [EC|p)|lp(-)]]];

T Simulation physics parameters Information bottleneck (IB) term, derived from
minimizing mutual information between p and z.

z : Latent space (Appendix)

T : Trajectory of states

7 : Policy

v : Discount factor

r¢ : Reward at timestep ¢

[ : Hyperparameter

p(+) : Variational prior, chosen to be N (0, 1)
E(-|p) : Encoder



Literature Review: Learning Agile Robotic Locomotion Skills by Imitating Animals
Drawbacks

e This approach is not able to learn a general controller for the quadruped
e Collecting mocap data from animals is not a scalable data collection pipeline
o Adding artist-generated animations to the dataset is perhaps evidence of this



Conclusion: Comparison

e Policies Modulating Trajectory Generators (Method A) primarily relies on robustness, which is
desirable for its simplicity and works when the sim2real gap is small.
o Requires no real robot training.
o Potentially sacrifices performance.
e [Learning Agile Robotic Locomotion Skills by Imitating Animals (Method C) is the most powerful
formulation, since it enables a continuously-tunable tradeoff between robustness and adaptability via
the hyperparameter 3.
o Learning Fast with Meta Strategy Optimization (Method B) controls this tradeoff through the
size of the latent space. However, increasing the latent space size greatly increases required
computation, since the latent space is found through random search.

o Method C therefore scales better to more complex tasks with larger sim2real gaps.



Conclusion: Potential Future Work

e Pass observations through an information bottleneck to improve generalization performance
e Instead of limiting the observation space to only IMU data like Method A, learn what to
exclude
Continuously tune the amount of exclusion
This method is more general

I
- -
|

Actions

Observations

Latent space

Impose mutual
information
restriction
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Appendix: Derivation of Stochastic Encoder Regularizing loss term from Mutual
Information Constraint

The authors aim to minimize the mutual information between the input (simulation dynamics parameters), M, and the latent
space (encoder output) Z. Mutual information is given by:

I(M,Z) //p og p m, 2) dmdz— //p (m, z) log (zjm >dmdz (1)
p m)p p(z)
= //p(m,z) log p(z|m) dmdz — //p(m,z) logp(z) dmdz (2)
However, this is difficult to com'pu.te, so p(z) is approximated with q(z) Using the fact that KL-divergence is always positive:
Dkw(p(2) || ¢(2)) = / (2) log qg.c; dz=z0= /p ) logp(z) dz > /p( ) log q(z) dz 3)

:>// (m, z) logp(z d;.dm>// m, z) log q(z) dzdm (4)



Appendix: Derivation of Stochastic Encoder Regularizing loss term from Mutual
Information Constraint

Combining (2) and (4) yields:

IM,Z) < //p(m.z) log p(z|m) dmdy—//p(m.z) log q(z) dmd-z (5)
= m)p(z|m) lo Pelny) mdz
= [ [ ptmiptelm) 10g P2 dma ©)
= p(z|m) log pleim) (7]
— B | [ pleim) 1o 2150 )
— En D (p(zlm) [ 4(2))] ®)

p(z|m) is the encoder network. The authors chose the output of the encoder and variational prior ¢(z) to both be Gaussians
so that an analytical KL-diverengce can be computed and optimized with gradient descent.

Back

Reference: Alemi, Alexander A., lan Fischer, Joshua V. Dillon, and Kevin Murphy. "Deep variational information bottleneck." arXiv preprint arXiv:1612.00410 (2016).



Appendix: Advantage Weighted Regression

e Off-policy algorithm

Algorlthm 1 Adaptation with Advantage-Weighted Regression

7 < trained policy
wo < N(O I)
D+ 0
for iteration k£ = 0, ..., kpax — 1 do
zj. < sampled encoding from wy(z)
Rollout an episode with 7 conditioned z; and record
the return Ry,
Store (zx,Rk) in D
2 VL % Zle R;
9: W41 ¢ arg max, Ziﬁ"’:l [log w(z;) exp (2 (Ri — ©))]
10: end for

Gy Lh. g T b e

oo =l

Peng, Xue Bin, Aviral Kumar, Grace Zhang, and Sergey Levine. "Advantage-weighted regression: Simple and scalable off-policy reinforcement learning."
arXiv preprint arXiv:1910.00177 (2019). (https://arxiv.org/pdf/1910.00177.pdf)



Appendix: Augmented Random Search

Algorithm 2 Augmented Random Search (ARS): four versions V1, V1-t, V2 and V2-t
1: Hyperparameters: step-size a, number of directions sampled per iteration N, standard devi-
ation of the exploration noise v, number of top-performing directions to use b (b < N is allowed
only for V1-t and V2-t)

: Initialize: My =0 € RP*" 1o =0 € R", and g =1, € R"*", j =0.

: while ending condition not satisfied do

Sample 1,92, ...,0x in RP*™ with i.i.d. standard normal entries.

Collect 2N rollouts of horizon H and their corresponding rewards using the 2V policies

va. Tkt (@) = (M +v6y) diag ()" (z - 1y)
ik, —(2) = (M — V(Sk)diag(Ej)—lﬁ(z _—

for ke {1,2,...,N}.

6:  Sort the directions 0y by max{r(mj,+),7(7jr,—)}, denote by d(;y the k-th largest direction,
and by 7; (x),+ and 7; (), the corresponding policies.

7:  Make the update step:

b

My = Mj+ 52> [r(m,00,4) — 7(m5,0,-)] Sk
k=1

where o is the standard deviation of the 2b rewards used in the update step.

8 V2: Set pjq1, Xj41 to be the mean and covariance of the 2NH (j + 1) states encountered
from the start of training.?

9 jj+1

10: end while

Mania, Horia, Aurelia Guy, and Benjamin Recht. "Simple random search provides a competitive approach to reinforcement learning." arXiv preprint arXiv:1803.07055 (2018). (https://arxiv.org/pdf/1803.07055.pdf)



Appendix: Proximal Policy Optimization

LCPI(g) = &, To(ay | st) Al =T, [Tt<9)At]

7Teold (a't | St)

LCLIP () = i, [min(rt(e)At, clip(r:(8),1 — €, 1 + e)At)]

Schulman, John, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. "Proximal policy optimization algorithms." arXiv preprint arXiv:1707.06347 (2017). (https://arxiv.org/pdf/1707.06347.pdf)



Appendix: Vanilla Policy Gradient

VeJ(mg) = Vo E [R(7)]

Tr~TTg
= Vy / P(7|0)R(T) Expand expectation
= / VoP(7|0)R(T) Bring gradient under integral
— /P(T|0)V9 log P(7|0)R(7) Log-derivative trick
= E [Vylog P(7]60)R(T)] Return to expectation form
T~TTY

VQJ(W()) =K

T~

T
Z Vo log mg(as|s)) R(T)| Expression for grad-log-prob
t=0

https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html
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https://docs.google.com/file/d/1o5RFMGzjb7b4lgJqsvv7f7I5PQhhCdER/preview

Appendix: Policies Modulating Trajectory Generators

Main Idea: Learning from scratch is time consuming and hard, use prior knowledge in the form of a
trajectory (i.e. gait) generator

Output
° Open-loop gait pattern

Inputs
s Ston longh {Trajectory generator (TG) ——
° Base height

~ - _ Trajectory

Ext;\h(;\, I\X/atkmg )
W yheight N
Amplitude
Figure 4: Illustration of robot leg trajecto-
ries generated by the TG.

Iscen, Atil, Ken Caluwaerts, Jie Tan, Tingnan Zhang, Erwin Coumans, Vikas Sindhwani, and Vincent Vanhoucke. "Policies modulating trajectory generators." In Conference on Robot Learning, pp.
916-926. PMLR, 2018.



Appendix: Policies Modulating Trajectory Generators

V- N

/

.' [ Trajectory generator (TG)

TG phase: Py TG parameters:
f;g’ atg' hlg

Robot

Policy network

Desired velocity

State: s u: Target motor positions

\,\\

/  Observations/state s:
/ motor positions, IMU

Figure 5: Adaptation of PMTG to the quadruped locomotion problem.

Iscen, Atil, Ken Caluwaerts, Jie Tan, Tingnan Zhang, Erwin Coumans, Vikas Sindhwani, and Vincent Vanhoucke. "Policies modulating trajectory generators." In Conference on Robot Learning, pp. 916-926. PMLR, 2018.



