Jeremiah M. Coholich

jmcoholich@gmail.com \(\phi \) www.jeremiahcoholich.com

EDUCATION

PhD in Robotics, Georgia Institute of Technology

Expected Summer 2026

Advisor: Zsolt Kira

MS in Computer Science, Georgia Institute of Technology

December 2022

Concentration: Computational Perception/Robotics

Capstone Project: Learning High-Value Footstep Placements for Quadruped Robots

GPA: 3.92 / 4.0

BS in Mechanical Engineering, The University of Texas at Austin, Highest Honors

2019

GPA: 3.98 / 4.0

SKILLS

Software Engineering

Languages Python, MATLAB, Shell scriptFrameworks PyTorch, TensorFlow, NumPy

Tools Docker, Slurm, LaTeX, Anaconda, Git, Linux, Matplotlib, Weights & Biases

Mechanical Engineering

CAD Solidworks and Solidworks Simulation, Siemens NX with Teamcenter, some NASTRAN

Manufacturing Manual and CNC machining with Mastercam and Fusion 360 CAM

RESEARCH EXPERIENCE

Graduate Researcher, Robot Perception and Learning Lab

June 2020 - Present

- Setup VR teleoperation pipeline with Meta Quest 3 and Franka Emika Panda Robot
- Fine-tune and deploy large vision-language models on robot demonstrations for manipulation
- Improve 3D computer vision pipeline for dog pose and shape extraction from monocular images
- Develop and implement novel learning-based planning and control algorithms for quadruped robots in simulation
- Reproduce results from academic papers in the field of reinforcement learning (RL) and robotics
- Create robot environments in NVIDIA IsaacGym and PyBullet simulation with procedurally-generated terrain
- Implement pipeline for reproducible training of RL policies, multi-GPU policy evaluation, and data collection
- Derive and implement vectorized analytical inverse kinematics for quadruped robot

Research Scientist Intern, Honda Research Institute

June 2023 - September 2023

- Develop novel visual sim2real algorithms for deep learning-based dexterous manipulation
- Train and deploy neural network policies on multi-fingered dexterous hand with arm

Graduate Researcher, Laboratory for Intelligent Decision and Autonomous Robots August

August 2019 - May 2020

- Studied nonlinear optimization of biped walking gaits on Cassie robot from Agility Robotics
- Wrote program for hybrid trajectory optimization of five-link walker on soft terrain using MATLAB, FROST, IPOPT, and Wolfram Mathematica
- Operate Cassie robot and tune PD controller gains
- Advise undergraduate team in creating upper-body robot and building Cassie test hardware

Undergraduate Research Assistant, Human Centered Robotics Lab

February 2018 - May 2019

• Implemented a novel low-level force controller for arm exoskeleton under mentorship of PhD student

- Designed and ran system ID experiments for arm exoskeleton
- Designed and fabricated an adjustable-stiffness flexure for exoskeleton
- Modeled a 3-axis robotic joint in order to aid in placement of actuators and prevent issues with gimbal lock
- Selected as one of 15 finalists out of 250 students at the Longhorn Research Poster Session for undergraduates

Undergraduate Research Assistant, Laboratory for Freeform Fabrication

Summer 2016

• Conducted study on relationship between SLS machine laser energy density and part density and tensile strength

PUBLICATIONS

- **Jeremiah Coholich**, Justin Wit, Zsolt Kira. "Sim2real Image Translation Enables ViewpointRobust Policies from Fixed-Camera Datasets". Accepted at CVPR 2025 Embodied AI Workshop
- **Jeremiah Coholich**, Muhammad Ali Murtaza, Seth Hutchinson, Zsolt Kira. "Hierarchical Reinforcement Learning and Value Optimization for Challenging Quadruped Locomotion". Accepted at 2025 American Control Conference.
- Xiaofeng Guo, Bryan Blaise, Jennifer Molnar, **Jeremiah Coholich**, Shantanu Padte, Ye Zhao, and Frank L. Hammond III. "Soft Foot Sensor Design and Terrain Classification for Dynamic Legged Locomotion". Accepted at *IEEE International Conference on Soft Robotics* 2020.
- G. C. Thomas, J. M. Coholich, and L. Sentis, "Compliance Shaping for Control of Strength Amplification Exoskeletons with Elastic Cuffs," presented at *The IEEE/ASME International Conference on Advanced Intelligent Mechatronics*, Hong Kong, China, 2019
- David Bourell, **Jeremiah Coholich**, Antoine Chalancon, Abhimanyu Bhat. "Evaluation of energy density measures and validation for powder bed fusion of polyamide." *CIRP Annals Manufacturing Technology Vol. 1, 66* (Aug. 2017), pp. 217-220.

TEACHING

Teaching Assistant, CS 7643 Deep Learning

Fall 2023 - Present

Graduate Student Mentor, Create-X Capstone Projects

Spring 2020

• Advise three teams of undergraduate students on their startup-orientated capstone projects

FIRST Robotics Mentor, Cristo Rey Jesuit High School

Fall 2019 - Spring 2020

- Assist students during build days and at competition
- Organize Computer Aided Design workshop

Teaching Assistant, COE 3001 Mechanics of Deformable Bodies

Summer 2020

AWARDS

- National Defense Science and Engineering Graduate (NDSEG) Fellowship, 2020
- NASA Space Technology Graduate Research Opportunities (NSTGRO) Fellowship, 2020 (declined)
- Georgia Tech President's Fellowship, 2019
- George W. Bean Endowed Presidential Scholarship, 2016 2019

MECHANICAL ENGINEERING INDUSTRY EXPERIENCE

Associate Mechanical Engineer, SpaceX

Summer 2019

- Ran lifecycle and environmental testing for three different seals on the Dragon 2 Capsule
- Redesigned and procured seals

- Automated the creation of the company CAD fastener library with Python
- Finalized design for six robotics linkages, including FEA, safety, aesthetics, wiring, drawings, and procurement
- Designed spring counterbalance mechanism for 30 Nm robotic joint
- Designed and machined stand for upper-body exoskeleton
- Assisted with branding, shipping, and design of sales demo kits for proprietary EtherCAT devices

Mechanical Engineering Co-op, NASA Jet Propulsion Laboratory (JPL) May 2017 - December 2017

- Ran hardware testing campaign for percussive coring drill in Mars 2020 Perseverance Rover
- Designed and procured ground support equipment and testing fixtures
- Analyzed data collected from actuators, springs, and piezoelectric force sensors on percussion mechanism

OTHER EXPERIENCE

Engineering Boot Camp, Bell Helicopter

January 2017

• Competed in mechanical design challenge and presented solution to Bell executives

Team Captain and Co-founder, Longhorn Racing Electric FSAE Team

August 2015 - June 2017

- Ran a team of 46 members to build an electric, single-seater, formula-style racecar for 2017 competition
- Personally secured over \$7,000 worth of material and monetary donations
- Designed and manufactured electric powertrain with single motor, chain drive, and spool